Advertisement

Mathematische Annalen

, Volume 263, Issue 2, pp 237–250 | Cite as

Shilov points and Shilov boundaries

  • Rainer Wittmann
Article

Keywords

Shilov Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alfsen, E.M.: Compact convex sets and boundary integrals. Berlin, Heidelberg, New York: Springer 1971Google Scholar
  2. 2.
    Arens, R.A., Singer, I.M.: Function values as boundary integrals. Proc. Am. Math. Soc.5, 735–745 (1954)Google Scholar
  3. 3.
    Bauer, H.: Šilovscher Rand und Dirichletsches Problem. Ann. Inst. Fourier11, 89–136 (1961).Google Scholar
  4. 4.
    Bear, H.S.: The Šilov boundary for a linear space of continuous functions. Am. Math. Monthly68, 484–485 (1961)Google Scholar
  5. 5.
    Bliedtner, J., Hansen, W.: Simplicial cones in potential theory. Invent. Math.29, 83–110 (1975)Google Scholar
  6. 6.
    Boboc, N., Cornea, A.: Convex cones of lower semi-continuous functions on compact spaces. Rev. Roum. Math. Pures Appl.12, 471–525 (1967)Google Scholar
  7. 7.
    Brelot, M.: On topologies and boundaries in potential theory. Lecture Notes in Mathematics, No. 175. Berlin, Heidelberg, New York: Springer 1971Google Scholar
  8. 8.
    Constantinescu, C., Cornea, A.: Potential theory on harmonic spaces. Berlin, Heidelberg, New York: Springer 1972Google Scholar
  9. 9.
    Fuchssteiner, B., Hackenbroch, W.: Maximumpunkte. Arch. Math.23, 415–421 (1972)Google Scholar
  10. 10.
    Fuchssteiner, B., Lusky, W.: Convex cones. Amsterdam, New York, Oxford: North-Holland 1981Google Scholar
  11. 11.
    Wittmann, R.: On the existence of Shilov boundaries (to appear in Proc. Am. Math. Soc.)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Rainer Wittmann
    • 1
  1. 1.Mathematisch-Geographische FakultätKatholische Universität EichstättEichstättGermany

Personalised recommendations