Mathematische Annalen

, Volume 263, Issue 2, pp 227–236 | Cite as

Sums of powers of cusp form coefficients

  • R. A. Rankin


Cusp Form Form Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Delange, H.: Généralisation du théorème de Ikehara. Ann. Sci. Ecole Norm. Sup.71, 213–242 (1954)Google Scholar
  2. 2.
    Elliott, P.D.T.A.: Multiplicative functions and Ramanujan's τ-function. J. Austral. Math. Soc. (Ser. A)30, 461–468 (1981)Google Scholar
  3. 3.
    Li, W.C.W.: Newforms and functional equations. Math. Ann.212, 285–315 (1975)Google Scholar
  4. 4.
    Rankin, R.A.: Contributions to the theory of Ramanujan's function τ(n) and similar arithmetical functions. I. The zeros of the function\(\sum\limits_{n = 1}^\infty {\frac{{\tau (n)}}{{n^s }}}\) on the line\(\Re s = \frac{{13}}{2}.\). Proc. Cambridge Phil. Soc.35, 351–356 (1939)Google Scholar
  5. 5.
    Rankin, R.A.: Contributions etc. II. The order of the Fourier coefficients of integral modular forms. Proc. Cambridge Phil. Soc.35, 357–372 (1939)Google Scholar
  6. 6.
    Rankin, R.A.: An Ω-result for the coefficients of cusp forms. Math. Ann.203, 239–250 (1973)Google Scholar
  7. 7.
    Rankin, R.A.: Modular forms and functions. Cambridge: Cambridge University Press 1977Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • R. A. Rankin
    • 1
  1. 1.Department of MathematicsUniversity of GlasgowGlasgowScotland

Personalised recommendations