Mathematische Annalen

, Volume 263, Issue 2, pp 213–219 | Cite as

Spectrum and envelope of holomorphy for infinite dimensional riemann domains

  • Martin Schottenloher


Riemann Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexander, H.: Analytic functions on Banach spaces. Thesis, University of California, Berkeley, 1968Google Scholar
  2. 2.
    Arens, R.: Dense inverse limit rings. Mich. Math. J.5, 169–182 (1958)Google Scholar
  3. 3.
    Coeuré, G.: Fonctions plurisousharmoniques sur les espaces vectoriels topologiques et applications à l'étude des fonctions analytiques. Ann. Inst. Fourier20, 361–432 (1970)Google Scholar
  4. 4.
    Coeuré, G.: Analytic functions and manifolds in infinite dimensional spaces. Amsterdam: North-Holland 1974Google Scholar
  5. 5.
    Dineen, S.: Complex analysis in locally convex spaces. Amsterdam: North-Holland, 1981Google Scholar
  6. 6.
    Exbrayat, J.M.: Fonctions analytiques dans un espace de Banach (d'après Alexander). In: Séminaire P. Lelong, 1969. Lecture Notes in Mathematics, No.116, pp. 30–38. Berlin, Heidelberg, New York: Springer 1970Google Scholar
  7. 7.
    Gruman, L., Kiselman, C.O.: Le problème de Levi dans les espaces de Banach à base. C.R. Acad. Sci.275A, 1296–1299 (1972)Google Scholar
  8. 8.
    Gunning, R.C., Rossi, H.: Analytic functions of several variables. Englewood Cliffs: Prentice-Hall 1965Google Scholar
  9. 9.
    Hirschwitz: Prolongement analytique en dimension infinie. Ann. Inst. Fourier22, 255–296 (1972)Google Scholar
  10. 10.
    Isidro, J.M.: Characterization of the spectrum of some topological algebras of holomorphic functions. In: Advances in holomorphy. Ed. J. A. Barroso. Amsterdam. North-Holland 1979Google Scholar
  11. 11.
    Josefson, B.: A counterexample to the Levi problem. In: Proceedings on infinite dimensional holomorphy. Eds. T. L. Hayden, T. J. Suffridge. Lecture Notes in Mathematics, No.364, pp. 79–89. Berlin, Heidelberg, New York: Springer 1974Google Scholar
  12. 12.
    Matyszczyk, C.: Approximation of analytic and continuous mappings by polynomials in Fréchet spaces. Studia Math.60, 223–238 (1977)Google Scholar
  13. 13.
    Mujica, J.: The Oka-Weil theorem in locally convex spaces with the approximation property. Séminaire P. Krée, 1977/78. Exposé 3. ParisGoogle Scholar
  14. 14.
    Mujica, J.: Complex homomorphisms of the algebra of holomorphic functions on Fréchet spaces. Math. Ann.241, 73–82 (1979)Google Scholar
  15. 15.
    Rossi, H.: On envelopes of holomorphy. Comm. pure appl. Math.16, 9–19 (1963)Google Scholar
  16. 16.
    Schottenloher, M.: Über analytische Fortsetzung in Banachräumen. Math. Ann.199, 313–336 (1972)Google Scholar
  17. 17.
    Schottenloher, M.: Analytic continuation and regular classes in locally convex Hausdorff spaces. Portugal. Math.33, 219–250 (1974)Google Scholar
  18. 18.
    Schottenloher, M.: The Levi problem for domains spread over locally convex spaces with a finite dimensional Schauder decomposition. Ann. Inst. Fourier26, 207–237 (1976)Google Scholar
  19. 19.
    Schottenloher, M.: τ0ω for domains in ℂN. In: Infinite dimensional holomorphy and applications. Ed. M. C. Matos., pp. 393–395. Amsterdam: North-Holland 1977Google Scholar
  20. 20.
    Schottenloher, M.: Michael problem and algebras of holomorphic functions. Arch. Math.37, 241–247 (1981)Google Scholar
  21. 21.
    Schottenloher, M.: Cartan-Thullen theorem for domains spread over DFM-spaces (to appear in J. reine angew. Math.)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Martin Schottenloher
    • 1
  1. 1.Mathematisches Institut der UniversitätMünchen 2Germany

Personalised recommendations