Mathematische Annalen

, Volume 263, Issue 2, pp 179–184 | Cite as

Capacitary inequalities of the Brunn-Minkowski type

  • Christer Borell


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borell, C.: Complements of Lyapunov's inequality. Math. Ann.205, 323–331 (1973)Google Scholar
  2. 2.
    Borell, C.: Convex measures on locally convex spaces. Ark. Mat.12, 239–352 (1974)Google Scholar
  3. 3.
    Borell, C.: Convex set functions ind-space. Period. Math. Hungar.6, 111–136 (1975)Google Scholar
  4. 4.
    Borell, C.: The Brunn-Minkowski inequality in Gauss space. Invent. Math.30, 207–216 (1975)Google Scholar
  5. 5.
    Borell, C.: Brownian motion in a convex ring and quasi-concavity. Commun. Math. Phys.86, 143–147 (1982)Google Scholar
  6. 6.
    Borell, C.: Convexity of measures in certain convex cones in vector space σ-algebras. Math. Scand. (to appear)Google Scholar
  7. 7.
    Gabriel, R.M.: An extended principle of the maximum for harmonic functions in 3-dimensions. J. London Math. Soc.30, 388–401 (1955)Google Scholar
  8. 8.
    Gabriel, R.M.: A result concerning convex level surfaces of 3-dimensional harmonic functions. J. London Math. Soc.32, 286–294 (1957)Google Scholar
  9. 9.
    Lewis, J.L.: Capacitary functions in convex rings. Arch. Rational Mech. Anal.66, 201–224 (1977)Google Scholar
  10. 10.
    Port, S.C., Stone, C.J.: Brownian motion and classical potential theory. New York, San Francisco, London: Academic Press 1978Google Scholar
  11. 11.
    Rao, M.: Brownian motion and classical potential theory. Lecture Notes Series No. 47, Aarhus Universitet 1977Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Christer Borell
    • 1
  1. 1.Department of MathematicsChalmers UniversityGöteborgSweden

Personalised recommendations