Mathematische Annalen

, Volume 263, Issue 2, pp 145–156 | Cite as

Order isomorphisms of Fourier-Stieltjes algebras

  • Wolfgang Arendt
  • Jean De Cannière


Order Isomorphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arendt, W., De Cannière, J.: Order isomorphisms of Fourier algebras. J. Funct. Anal.50, 1–7 (1983)Google Scholar
  2. 2.
    Dixmier, J.: LesC *-algèbres et leurs représentations. Paris: Gauthier-Villars 1969Google Scholar
  3. 3.
    Eymard, P.: L'algèbre de Fourier d'un groupe localement compact. Bull. Soc. Math. France92, 181–236 (1964)Google Scholar
  4. 4.
    Johnson, B.E.: Isometric isomorphisms of measure algebras. Proc. Am. Math. Soc.15, 186–188 (1964)Google Scholar
  5. 5.
    Katznelson, Y.: An introduction to harmonic analysis. New York: John Wiley & Sons 1968Google Scholar
  6. 6.
    Kawada, Y.: On the group ring of a topological group. Math. Japon1, 1–5 (1948)Google Scholar
  7. 7.
    Russo, B., Dye, H.A.: A note on unitary operators inC *-algebras. Duke Math. J.33, 413–416 (1966)Google Scholar
  8. 8.
    Schaefer, H.H.: Banach lattices and positive operators. Berlin, Heidelberg, New York: Springer 1974Google Scholar
  9. 9.
    Walter, M.E.:W *-algebras and nonabelian harmonic analysis. J. Funct. Anal.11, 17–38 (1972)Google Scholar
  10. 10.
    Wendel, J.G.: On isometric isomorphisms of group algebras. Pac. J. Math.1, 305–311 (1951)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Wolfgang Arendt
    • 1
  • Jean De Cannière
    • 2
  1. 1.Mathematisches Institut der UniversitätTübingenGermany
  2. 2.Department of MathematicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations