Advertisement

Mathematische Annalen

, Volume 261, Issue 1, pp 63–80 | Cite as

Helical immersions into a unit sphere

  • Kunio Sakamoto
Article

Keywords

Unit Sphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allamigeon, A.: Propriétés globales des espaces de Riemann harmoniques. Ann. Inst. Fourier15, 91–132 (1965)Google Scholar
  2. 2.
    Berger, M., Gaudechon, P., Mazet, E.: Le spectre d'une variété Riemannienne. Lecture Notes, Vol. 194. Berlin, Heidelberg, New York: Springer 1971Google Scholar
  3. 3.
    Besse, A.: Manifolds all of whose geodesics are closed. Ergebnisse der Mathematik, Bd. 93. Berlin, Heidelberg, New York: Springer 1978Google Scholar
  4. 4.
    Ferus, D.: Symmetric submanifolds of Euclidean space. Math. Ann.247, 81–93 (1980)Google Scholar
  5. 5.
    Helgason, S.: Differential geometry and symmetric spaces. New York, London: Academic Press 1962Google Scholar
  6. 6.
    Hong, S.L.: Isometric immersions of manifolds with plane geodesics into Euclidean space. J. Differential Geometry8, 259–278 (1973)Google Scholar
  7. 7.
    Kobayahsi, S., Nomizu, K.: Foundations of differential geometry. II. New York, London, Sydney: Interscience 1969Google Scholar
  8. 8.
    Little, J.A.: Manifolds with planar geodesics. J. Differential Geometry11, 265–285 (1976)Google Scholar
  9. 9.
    Michel, D.: Comparison des notions de variétés Riemanniennes globalement harmoniques et fortement harmoniques. C.R. Acad. Sci. Paris, Ser. A282, 1007–1010 (1976)Google Scholar
  10. 10.
    Nakagawa, H.: On a certain minimal immersion of a Riemannian manifold into a sphere. Kodai Math. J.3, 321–340 (1980)Google Scholar
  11. 11.
    O'Neill, B.: Isotropic and Kaeler immersions. Canad. J. Math.17, 909–915 (1965)Google Scholar
  12. 12.
    Ruse, H.S., Walker, A.G., Willmore, T.J.: Harmonic spaces. Consiglio Nacionale delle Ricerche. Monographie Mathematiche 8, Roma: Edizioni Cremonese 1961Google Scholar
  13. 13.
    Sakamoto, K.: Planar geodesic immersions. Tôhoku Math. J.29, 25–56 (1977)Google Scholar
  14. 14.
    Takahashi, T.: Minimal immersions of Riemannian manifolds. J. Math. Soc. Japan18, 203–215 (1968)Google Scholar
  15. 15.
    Wallach, N.R.: Symmetric spaces. Boothby, W.M., Weiss, G.L., eds. New York: Marcel Dekker 1972Google Scholar
  16. 16.
    Wolter, F.E.: Distance function and cut loci on a complete Riemannian manifold. Arch. Math.32, 92–96 (1979)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Kunio Sakamoto
    • 1
  1. 1.Department of MathematicsTokyo Institute of TechnologyTokyoJapan

Personalised recommendations