Mathematische Annalen

, Volume 270, Issue 2, pp 297–316 | Cite as

k-Symmetric submanifolds ofR N

  • Cristián U. Sánchez


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borel, A., Hirzebruch, F.: Characteristic classes and homogeneous spaces. I, II. Am. J. Math.80, 458–538 (1958);81, 315–382 (1959)Google Scholar
  2. 2.
    Chen, B.: Geometry of submanifolds. Marcel Dekker 1973Google Scholar
  3. 3.
    Dynkin, E.B.: The maximal subgroups of the classical groups. AMS Translations Series 2 v 6, 245–378 (1960)Google Scholar
  4. 4.
    Ferus, D.: Symmetric submanifolds of euclidean space. Math. Ann.247, 81–93 (1980)Google Scholar
  5. 5.
    Gray, A.: Riemannian manifolds with geodesic symmetries of order 3. J. Diff. Geom.7, 343–369 (1972)Google Scholar
  6. 6.
    Helgason, S.: Differential geometry, Lie groups, and symmetric spaces. Academic Press 1978Google Scholar
  7. 7.
    Humphreys, J.E.: Introduction to Lie algebras and representation theory. Berlin, Heidelberg, New York: Springer 1972Google Scholar
  8. 8.
    Kelly, E.F.: Tight equivariant imbeddings of symmetric spaces. J. Diff. Geom.2, 203–215 (1968)Google Scholar
  9. 9.
    Kobayashi, S.: Isometric imbeddings of compact symmetric spaces. Tohoku Math. J.20, 21–25 (1968)Google Scholar
  10. 10.
    Kobayashi, S., Nomizu, K.: Foundations of differential geometry. I, II. New York: Interscience (1969)Google Scholar
  11. 11.
    Kowalski, O.: Generalized symmetric spaces. In: Lecture Notes in Mathematics, Vol. 805. Berlin, Heidelberg, New York: Springer 1980Google Scholar
  12. 12.
    Kowalski, O.: Riemannian manifolds with general symmetries. Math. Z.136, 137–150 (1974)Google Scholar
  13. 13.
    Kuiper, N.: Minimal total absolute curvature for immersions. Invent. Math.10, 209–238 (1970)Google Scholar
  14. 14.
    Vilms, J.: Submanifolds of euclidean space with parallel second fundamental form. Proc. Am. Math. Soc.32, 263–267 (1972)Google Scholar
  15. 15.
    Wallace, N.: Harmonic analysis on homogeneous spaces. Marcel Dekker 1973Google Scholar
  16. 16.
    Wolf, J., Gray, A.: Homogeneous spaces defined by Lie group automorphism. I, II. J. Differential Geometry2, 77–159 (1968)Google Scholar
  17. 17.
    Wolf, J.: Spaces of constant curvature. New York: McGraw-Hill 1967Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Cristián U. Sánchez
    • 1
  1. 1.Facultad de Matematica Astronomia y FisicaIMAF, Universidad Nacional de CórdobaCórdobaArgentina

Personalised recommendations