Advertisement

Mathematische Annalen

, Volume 270, Issue 2, pp 275–284 | Cite as

About the morse theory for certain variational problems

  • Gerhard Ströhmer
Article

Keywords

Variational Problem Morse Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bott, R.: Marston Morse and his mathematical works. Bull. Am. Math. Soc.3, 907–950 (1980)Google Scholar
  2. 2.
    Cairns, S., Morse, M.: Critical point theory in global analysis and differential topology. New York, London: Academic Press 1969Google Scholar
  3. 3.
    Ladyzhenskaya, O.A., Ural'tseva, N.N.: Linear and quasilinear elliptic equations. New York, London: Academic Press 1968Google Scholar
  4. 4.
    Milnor, J.: Morse theory. Princeton, NJ: Princeton University Press 1963Google Scholar
  5. 5.
    Morse, M., Tompkins, C.B.: Unstable minimal surfaces of higher topological structure. Duke Math. J.8, 350–375 (1941)Google Scholar
  6. 6.
    Palais, R.S.: Morse theory on Hilbert manifolds. Topology2, 299–340 (1963)CrossRefGoogle Scholar
  7. 7.
    Shiffman, M.: Instability for double integral problems in the calculus of variations. Ann. Math.45, 543–576 (1944)Google Scholar
  8. 8.
    Smale, S.: Morse theory and a nonlinear generalization of the Dirichlet problem. Ann. Math.80, 382–396 (1964)Google Scholar
  9. 9.
    Spanier, E.H.: Algebraic topology. New York: McGraw-Hill 1966Google Scholar
  10. 10.
    Ströhmer, G.: Some remarks about variational problems with constraints. Rassias, G. and Rassias, T. (eds.): Differential geometry-calculus of variations and their applications. New York: Dekker (to appear)Google Scholar
  11. 11.
    Ströhmer, G.: Unstable solutions of the Euler equations of certain variational problems. Math. Z.186, 179–199 (1984)Google Scholar
  12. 12.
    Struwe, M.: On a critical point theory for minimal surfaces spanning a wire in ℝn. J. Reine Angew. Math.349, 1–23 (1984)Google Scholar
  13. 13.
    Tromba, A.: A general approach to Morse theory. J. Differential Geometry12, 47–85 (1977)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Gerhard Ströhmer
    • 1
  1. 1.Institut für MathematikTechnische HochschuleAachenFederal Republic of Germany

Personalised recommendations