Mathematische Annalen

, Volume 270, Issue 2, pp 235–248 | Cite as

Local diophantine properties of Shimura curves

  • Bruce W. Jordan
  • Ron A. Livne


Diophantine Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Čerednik, I.V.: Uniformization of algebraic curves by discrete arithmetic subgroups of PGL2(k w) with compact quotients. (in Russian). Mat. Sb. (N.S.)100, 59–88 (1976), Math. USSR Sb.29, 55–78 (1976)Google Scholar
  2. 2.
    Drinfeld, V.G.: Coverings ofp-adic symmetric regions (in Russian). Functional. Anal. i Priložen.10, 29–40 (1976), Functional Anal. Appl.10, 107–115 (1976)Google Scholar
  3. 3.
    Eichler, M.: Modular correspondences and their representations. Report of an International Colloquium on Zeta-Functions. Bombay, 1956Google Scholar
  4. 4.
    Grothendieck, A.: Etude locale des schémas et des morphismes de schémas (EGAIV). Publ. Math. IHES32 (1967)Google Scholar
  5. 5.
    Ihara, Y.: Hecke polynomials as congruence ζ functions in elliptic modular case. Ann. Math.85, 267–295 (1967)Google Scholar
  6. 6.
    Jordan, B.: On the diophantine arithmetic of Shimura curves. Thesis, Harvard University, 1981.Google Scholar
  7. 7.
    Kurihara, A.: On some examples of equations defining Shimura curves and the Mumford uniformization. J. Fac. Sci. Univ. Tokyo, Sec. IA25, 277–301 (1979)Google Scholar
  8. 8.
    Michon, J.-F.: Courbes de Shimura de genre I Séminaire Delange-Pisot-Poitou, 1980/1981Google Scholar
  9. 9.
    Milne, J.S.: Étale cohomology, Princeton, NJ: Princeton University Press 1980Google Scholar
  10. 10.
    Morita, Y.: Ihara's conjectures and moduli space of abelian varieties Master's Thesis. Univ. Tokyo, 1970Google Scholar
  11. 11.
    Mumford, D.: An analytic construction of degenerating curves over complete local rings. Compositio Math.24, 129–174 (1972)Google Scholar
  12. 12.
    Serre, J.-P.: Arbres, amalgames, SL2. Astérisque46. Soc. Math. France 1977Google Scholar
  13. 13.
    Shimura, G.: Construction of class fields and zeta functions of algebraic curves. Ann. Math.85, 58–159 (1967)Google Scholar
  14. 14.
    Shimura, G.: On the real points of an arithmetic quotient of a bounded symmetric domain. Math. Ann.215, 135–164 (1975)Google Scholar
  15. 15.
    Zink, T.: Über die schlechte Reduktion einiger Shimuramannigfaltigkeiten. Compositio Math.45, 15–107 (1981)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Bruce W. Jordan
    • 1
  • Ron A. Livne
    • 2
  1. 1.Mathematisches Institut der UniversitätGöttingenFederal Republic of Germany
  2. 2.Department of MathematicsPrinceton UniversityPrincetonUSA

Personalised recommendations