Advertisement

Mathematische Annalen

, Volume 270, Issue 2, pp 165–199 | Cite as

K2-Cohomology and the second Chow group

  • Jean-Louis Colliot-Thélène
  • Wayne Raskind
Article

Keywords

Chow Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bloch, S.: Torsion algebraic cycles,K 2, and Brauer groups of function fields. In: Lecture Notes in Mathematics, Vol. 844, Ed. M. Kervaire et M. Ojanguren. Berlin, Heidelberg, New York: Springer 1981Google Scholar
  2. 2.
    Bloch, S.: Torsion algebraic cycles and a theorem of Roitman. Compositio Math.39, 107–127 (1979)Google Scholar
  3. 3.
    Bloch, S.: Lectures on algebraic cycles. Duke Univ. Math. Ser.4, Durham (1980)Google Scholar
  4. 4.
    Bloch, S.: On the Chow groups of certain rational surfaces. Ann. Sci. Ecole Norm. Sup.14, 41–59 (1981)Google Scholar
  5. 5.
    Bloch, S.: AlgebraicK-theory and classfield theory for arithmetic surfaces. Ann. Math.114, 229–265 (1981)Google Scholar
  6. 6.
    Bloch, S., Ogus, A.: Gersten's conjecture and the homology of schemes. Ann. Sci. Ecole Norm. Sup.7, 181–202 (1974)Google Scholar
  7. 7.
    Bloch, S., Srinivas, V.: Remarks on correspondences and algebraic cycles. Am. J. Math.105, 1235–1253 (1983)Google Scholar
  8. 8.
    Colliot-Thélène, J.-L.: Hilbert's theorem 90 forK 2, with application to the Chow groups of rational surfaces. Invent. Math.71, 1–20 (1983)Google Scholar
  9. 9.
    Colliot-Thélène, J.-L., Sansuc, J.-J.: On the Chow groups of certain rational surfaces: a sequel to a paper of S. Bloch. Duke Math. J.48, 421–447 (1981)Google Scholar
  10. 10.
    Colliot-Thélène, J.-L., Sansuc, J.-J., Soulé, C.: Torsion dans le groupe de Chow de codimension deux. Duke Math. J.50, 763–801 (1983)Google Scholar
  11. 11.
    Coombes, K.R., Srinivas, V.: A remark onK 1 of an algebraic surface. Math. Ann.265, 335–342 (1983)Google Scholar
  12. 12.
    Deligne, P.: La conjecture de Weil, I. Publ. Math. I.H.E.S.43, 273–308 (1974)Google Scholar
  13. 13.
    Deligne, P.: La conjecture de Weil, II. Publ. Math. I.H.E.S.52, 137–252 (1980)Google Scholar
  14. 14.
    Gabber, O.: Sur la torsion dans la cohomologiel-adique d'une variété. C. R. Acad. Sci. Paris297, 179–182 (1983)Google Scholar
  15. 15.
    Geyer, W.-D.: Ein algebraischer Beweis des Satzes von Weichold über reelle algebraische Funktionenkörper. In: Algebraische Zahlentheorie, Oberwolfach 1964, Mannheim, Bibliographisches Institut, 83–98 (1967)Google Scholar
  16. 16.
    Geyer, W.-D.: Dualität bei abelschen Varietäten über reell abgeschlossenen Körpern. J. Reine angew. Math.293/294, 62–66 (1977)Google Scholar
  17. 17.
    Grothendieck, A.: Le groupe de Brauer II, in Dix exposés sur la cohomologie des schémas. pp. 67–87. Amsterdam: North-Holland 1968Google Scholar
  18. 18.
    Grothendieck, A.: Le groupe de Brauer III: exemples et compléments, ibid.in, pp. 88–188. Amsterdam: North-Holland 1968Google Scholar
  19. 19.
    Merkur'ev, A.S., Suslin, A.A.:K-cohomology of Severi-Brauer varieties and norm residue homomorphism. Izv. Akad. Nauk SSSR, Ser. Mat.46, 1011–1046 (1982)Google Scholar
  20. 20.
    Milne, J.S.: Zero cycles on algebraic varieties in nonzero characteristic: Rojtman's theorem. Compositio Math47, 271–287 (1982)Google Scholar
  21. 21.
    Murre, J.-P.: Un résultat en théorie des cycles algébriques de codimension deux. C.R. Acad. Sci. Paris296, 981–984 (1983)Google Scholar
  22. 22.
    Panin, I.A.: Fields whoseK 2 is zero. Torsion inH 1(X, K 2) andCH 2(X). Zap. LOMI116, 108–118 (1982)Google Scholar
  23. 23.
    Quillen, D.: Higher algebraicK-theory I. In: AlgebraicK-theory I. Lecture Notes in Mathematics, Vol. 341. Berlin, Heidelberg, New York: Springer 1973Google Scholar
  24. 24.
    Roitman, A.A.: On Π-equivalence of zero-dimensional cycles. Math. U.S.S.R. Sborn.15, 555–567 (1971)Google Scholar
  25. 25.
    Serre, J.-P.: On the fundamental group of a unirational variety. J. London Math. Soc.34, 481–484 (1959)Google Scholar
  26. 26.
    Soulé, C.:K-théorie des anneaux d'entiers de corps de nombres et cohomologie étale. Invent. Math.55, 251–295 (1979)Google Scholar
  27. 27.
    Suslin, A.A.: Torsion inK 2 of fields. Preprint, Leningrad 1982.Google Scholar
  28. 28.
    SGA 4 1/2: Cohomologie étale: les points de départ, par P. Deligne, rédigé par J.-F. Boutot (Arcata). In: Lecture Notes in Mathematics, Vol. 569. Berlin, Heidelberg, New York: Springer 1977Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Jean-Louis Colliot-Thélène
    • 1
  • Wayne Raskind
    • 2
  1. 1.MathématiquesC.N.R.S. et Université de Paris-SudOrsayFrance
  2. 2.D.P.M.M.S.CambridgeEngland

Personalised recommendations