Advertisement

Mathematische Annalen

, Volume 265, Issue 3, pp 335–342 | Cite as

A remark onK1 of an algebraic surface

  • K. R. Coombes
  • V. Srinivas
Article

Keywords

Algebraic Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beilinson, A.: Higher regulators and values ofL-functions of curves. Functional Analysis14, 116–117 (1980)Google Scholar
  2. 2.
    Bloch, S.: Lectures on algebraic cycles. Duke Univ. Math. Ser. IV, Durham: Dept. of Math., Duke Univ. 1980Google Scholar
  3. 3.
    Bloch, S.: The dilogarithm and extensions of Lie algebras. In: Lecture Notes in Mathematics, Vol. 854. Berlin, Heidelberg, New York: Springer 1981Google Scholar
  4. 4.
    Collino, A.: Quillen'sK-theory and algebraic cycles on almost nonsingular varieties. III. J. Math.25, 654–666 (1981)Google Scholar
  5. 5.
    Hochster, M.: Personal communicationGoogle Scholar
  6. 6.
    Gillet, H.: Riemann-Roch theorems for higher algebraicK-theory. Adv. Math.40, 203–289 (1981)Google Scholar
  7. 7.
    Grothendieck, A.: SGA 2. Cohomologie locale des faiseaux coherents et théorèmes de Lefschetz locaux et globaux. Amsterdam: North-Holland 1968Google Scholar
  8. 8.
    Kumar, Mohan: Personal CommunicationGoogle Scholar
  9. 9.
    Mumford, D.: Rational equivalence of zero cycles on algebraic surfaces. J. Math. Kyoto Univ.9, 195–204 (1968)Google Scholar
  10. 10.
    Quillen, D.: Higher algebraicK-theory, I. In: Lecture Notes in Mathematics, Vol. 341. Berlin, Heidelberg, New York: Springer 1972Google Scholar
  11. 11.
    Ramakrishnan, D.: A regulator for curves via the Heisenberg group. Bull. (new ser.) A.M.S.5, 191–195 (1981)Google Scholar
  12. 12.
    Roitman, A.A.: Rational equivalence of zero cycles. Math. USSR Sborn.18, 571–588 (1972)Google Scholar
  13. 13.
    Srinivas, V.: Zero cycles on a singular surface (to appear)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • K. R. Coombes
    • 1
  • V. Srinivas
    • 2
  1. 1.Department of MathematicsUniversity of OklahomaNormanUSA
  2. 2.School of MathematicsTata InstituteBombayIndia

Personalised recommendations