Mathematische Annalen

, Volume 265, Issue 3, pp 283–334 | Cite as

Projective models of enriques surfaces

  • Francois R. Cossec


Projective Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A]
    Artin, M.: On enriques surfaces. Doctoral Thesis, Harvard University 1960Google Scholar
  2. [A2]
    Artin, M.: Some numerical criteria for contractability of curves on algebraic surfaces. Am J. Math.84, 485–496 (1962); On isolated singularities of surfaces. Am. J. Math.88, 129–136 (1966)Google Scholar
  3. [B]
    Bombieri, E.: Canonical models of surfaces of general type. Publ. Math. IHES42, 171–219 (1973)Google Scholar
  4. [Be]
    Beauville, A.: Surfaces algebriques complexes. Astérisque54, 1978Google Scholar
  5. [C]
    Coble, A.: Algebraic geometry and theta functions. Vol. X Publ. Am. Math. Soc. 1981Google Scholar
  6. [Co]
    Cossec, F.R.: On Reye congruences. Trans. Am. Math. Soc. (to appear)Google Scholar
  7. [D]
    Demazure, M. et al.: Séminaire son les singularités des surfaces. Springer Lectures Notes in Mathematics, Vol. 777. Berlin, Heidelberg, New York: Springer 1980Google Scholar
  8. [F]
    Fano, G.: Nuovo rierche sulle congruenze di retta del 3° ordine. Mem. Accad. Sci. Cl. Sci. Fis. Mat. Natur. Torino50, 1–79 (1901); Superficie algebriche di genere zero e bigenere uno e loro casi particolari. Rend. Circ. Mat. Palermo29, 98–118 (1910)Google Scholar
  9. [Ha]
    Hartshorne, R.: Algebraic geometry. Graduate Texts in mathematics, Vol. 52. Berlin, Heidelberg, New York: Springer 1977Google Scholar
  10. [H]
    Horikawa, E.: On the periods of Enriques surfaces. I. Math. Ann.234, 73–88 (1978)Google Scholar
  11. [Ho]
    Horikawa, E.: On deformations of quintic surfaces. Invent. Math.31, 43–85 (1975)Google Scholar
  12. [Ko]
    Kodaira, K.: On compact analytic surfaces. II. Ann. Math.77, 563–626 (1963)Google Scholar
  13. [L]
    Lang, W.E.: Quasi-elliptic surfaces in characteristic three. Ann. Sci. Ecole Norm. sup.12, 473–500 (1979)Google Scholar
  14. [M]
    Mumford, D.: Enriques classification of surfaces in charp. Part I. In: Global analysis. Princeton: Princeton University Press 1969; Part II. In: Complex analysis and algebraic geometry. Cambridge: Cambridge University Press 1977Google Scholar
  15. [N]
    Nagata, M.: On rational surfaces. I. Mem. Coll. Sci. Univ. Kyoto Ser. A Math.32, 351–370 (1969)Google Scholar
  16. [R]
    Reye, T.: Geometrie der lage (2nd Edn.) Leipzig 1882Google Scholar
  17. [Š]
    Safarevic, I.R. et al.: Algebraic surfaces. Proc. Steklov Inst. Math.75 (1965) [Engl. Transl. Am. Math. Soc. (1967)]Google Scholar
  18. [S-D]
    Saint-Donat, B.: Projective models of K3 surfaces. Am. J. Math.96, 602–639Google Scholar
  19. [Se]
    Serre, J.P.: Cours d'arithmétique. Paris: Presses Universitaires de France 1970Google Scholar
  20. [Sg]
    Segre, C.: Surfaces du 4e ordre à conique double. Math. Ann.24, 313–344 (1884)Google Scholar
  21. [Sh]
    Shah, J.: Projective degenerations of Enriques surfaces. Math. Ann.256, 475 (1981)Google Scholar
  22. [Wa]
    Wall, C.T.C.: On classification of cubic surfaces. J. London Math. Soc.19, 245–256 (1979)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Francois R. Cossec
    • 1
  1. 1.Max-Planck-Institut für MathematikBonn 3Germany

Personalised recommendations