Mathematische Annalen

, Volume 267, Issue 4, pp 543–548 | Cite as

On Petersson norms for some liftings

  • Masaaki Furusawa


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andrianov, A.N.: Euler products corresponding to Siegel modular forms of genus 2. Russian Math. Surveys29, 45–116 (1974)Google Scholar
  2. 2.
    Andrianov, A.N.: Symmetric squares of zeta-functions of Siegel modular forms of genus 2. Proc. Steklov Inst. Math.142, 21–45 (1979)Google Scholar
  3. 3.
    Kurokawa, N.: Examples of eigenvalues of Hecke operators on Siegel cusp forms of degree two. Invent. Math.49, 149–165 (1978)Google Scholar
  4. 4.
    Kurokawa, N.: On Siegel eigenforms. Proc. Japan Acad. Ser. A Math. Sci.57, 47–50 (1981)Google Scholar
  5. 5.
    Kurokawa, N.: On Eisenstein series for Siegel modular groups. II. Proc. Japan Acad. Ser. A Math. Sci.57, 315–320 (1981)Google Scholar
  6. 6.
    Miyake, T.: On automorphic forms onGL 2 and Hecke operators. Ann. Math.94 174–189 (1971)Google Scholar
  7. 7.
    Mizumoto, S.: On Eisenstein series of degree two for Hilbert-Siegel modular groups. Proc. Japan Acad. Ser. A Math. Sci.58, 33–36 (1982)Google Scholar
  8. 8.
    Mizumoto, S.: On the secondL-functions attached to Hilbert modular forms. Math. Ann. (to appear)Google Scholar
  9. 9.
    Saito, H.: Automorphic forms and algebraic extensions of number fields. Lectures in Mathematics Vol. 8. Tokyo: Kinokuniya Book Store 1975Google Scholar
  10. 10.
    Shimura, G.: The special values of the zeta-functions associated with cusp forms. Comm. Pure Appl. Math.29, 783–804 (1976)Google Scholar
  11. 11.
    Sturm, J.: Special values of zeta-functions, and Eisentein series of half integral weight. Am. J. Math.102, 219–240 (1980)Google Scholar
  12. 12.
    Sturm, J.: The critical values of zeta-functions associated to the symplectic group Duke Math. J.48, 327–350 (1981)Google Scholar
  13. 13.
    Zagier, D.: Modular forms whose Fourier coefficients involve zeta-functions of quadratic fields. Lecture Notes in Mathematics 627, 105–169. Berlin, Heidelberg, New York: Springer 1977Google Scholar
  14. 14.
    Zagier, D.: Sur la conjecture de Saito-Kurokawa (d'après H. Maass). Progress in Mathematics Vol. 12, 371–394. Boston, Basel, Stuttgart: Birkhäuser 1981Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Masaaki Furusawa
    • 1
  1. 1.Department of MathematicsTokyo Institute of TechnologyTokyoJapan

Personalised recommendations