Advertisement

Mathematische Annalen

, Volume 267, Issue 4, pp 495–518 | Cite as

La 1-forme de torsion d'une variété hermitienne compacte

  • Paul Gauduchon
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. 1.
    Aubin, T.: Equations différentielles non-linéaires et problème de Yamabe concernant la courbure scalaire. J. Math. Pures Appl.55, 269–296 (1976)Google Scholar
  2. 2.
    Beauville, A.: Surfaces K3. Séminaire Bourbaki 1982/1983 Exposé no 609Google Scholar
  3. 3.
    Séminaire Palaiseau 1978: Première classe de Chern et courbure de Ricci: preuve de la conjecture de Calabi. Astérisque58 (SMF)Google Scholar
  4. 4.
    Folland, G.B.: Weyl manifolds. J. Differential Geometry4, 145–153 (1970)Google Scholar
  5. 5.
    Gauduchon, P.: Le théorème de l'excentricité nulle. C.R. Acad. Sci. Paris285, 387–390 (1977)Google Scholar
  6. 6.
    Gauduchon, P.: Fibrés hermitiens à endomorphisme de Ricci non-négatif. Bull. Soc. math. France105, 113–140 (1977)Google Scholar
  7. 7.
    Gauduchon, P.: La classe de Chern pluriharmonique. C.R. Acad. Sci. Paris282, 479–482 (1976)Google Scholar
  8. 8.
    Gauduchon, P.: Le théorème de dualité pluriharmonique. C.R. Acad. Sci. Paris293, 59–63 (1981)Google Scholar
  9. 9.
    Hopf, E.: Elementare Bemerkungen über die Lösung partieller Differentialgleichungen zweiter Ordnung vom elliptischen Typus. Sitzungber. Preuss. Akad. Wiss. Phys. Math. Kl.19, 147–152 (1927)Google Scholar
  10. 10.
    Kobayashi, S.: Curvature and stability of vector bundles. Proc. Japan Acad. Ser. A58 158–162 (1982)Google Scholar
  11. 11.
    Kobayashi, S.: Lecture notes (non publié)Google Scholar
  12. 12.
    Kobayashi, S., Nomizu, K.: Foundations of differential geometry II. Wiley: Interscience 1969Google Scholar
  13. 13.
    Kodaira, K.: On the structure of compact complex analytic surfaces. I. Am. J. Math.86, 751–798 (1964)Google Scholar
  14. 14.
    Lichnerowicz, A.: Théorie globale des connexions et des groupes d'holonomie. Roma: Edizione Cremonese 1962Google Scholar
  15. 15.
    Siu, Y.T.: Every K3 surface is Kähler Invent. Math.73, 139–150 (1983)Google Scholar
  16. 16.
    Vaisman, I.: Some curvature properties of complex surface. Preprint (1980)Google Scholar
  17. 17.
    Vaisman, I.: On locally and globally conformal Kähler manifolds. Trans. Am. Math. Soc.262, 533–542 (1980)Google Scholar
  18. 18.
    Wells, R.O., Jr.: Differential analysis on complex manifolds. Graduated 2o ed. Texts in Mathematics, Berlin, Heidelberg New York: Springer 1979Google Scholar
  19. 19.
    Weyl, H.: Space-time-matter. (transl. f. Raum Zeit Materie, 1921). London: Dover 1952Google Scholar
  20. 20.
    Chern, S.S.: Complex Manifolds without potential theory. Berlin, Heidelberg, New York: Springer 1979Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Paul Gauduchon
    • 1
  1. 1.ParisFrance

Personalised recommendations