Mathematische Annalen

, Volume 265, Issue 4, pp 513–527 | Cite as

On the word problem for the modular lattice with four free generators

  • Christian Herrmann


Word Problem Free Generator Modular Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Artman, B.: On coordinates in modular lattices. Illinois J. Math.12, 626–648 (1968)Google Scholar
  2. 2.
    Birkhoff, G.: On the combination of subalgebras. Proc. Cambridge Phil. Soc29, 441–464 (1933)Google Scholar
  3. 3.
    Birkhoff, G.: Lattice theory. Providence: Am. Math. Soc. Colloquium Publ. 1940Google Scholar
  4. 4.
    Dedekind, R.: Über die von drei Moduln erzeugte Dualgruppe. Math. Ann.53, 236–271 (1900)Google Scholar
  5. 5.
    Freese, R.: The variety of modular lattices is not generated by its finite members. Trans. Am. Math. Soc.255, 277–300 (1979)Google Scholar
  6. 6.
    Freese, R.: Projective geometries as projective modular lattices. Trans. Am. Math. Soc.251, 329–342 (1979)Google Scholar
  7. 7.
    Freese, R.: Free modular lattices. Trans. Am. Math. Soc.261, 81–91 (1980)Google Scholar
  8. 8.
    Freese, R.: Some order theoretic questions about free lattices and free modular lattices. In: Ordered sets, pp. 355–377. Rival, I. (ed.). Dordrecht: Reidel 1982Google Scholar
  9. 9.
    Gel'fand, I.M., Ponomarev, V.A.: Free modular lattices and their representations (in Russian). Usp. Math. Nauk.29, 3–58 (1974)Google Scholar
  10. 10.
    Hall, M., Dilworth, R.P.: The embedding problem for modular lattices. Ann. Math.45, 450–456 (1944)Google Scholar
  11. 11.
    Herrmann, C.:S-verklebte Summen von Verbänden. Math. Z.130, 255–274 (1973)Google Scholar
  12. 12.
    Herrmann, C.: On elementary Arguesian lattices with four generators. Algebra Universalis (to appear)Google Scholar
  13. 13.
    Huhn, A.: Schwach distributive Verbände. I. Acta Sci. Math.33, 297–305 (1972)Google Scholar
  14. 14.
    Hutchinson, G.: Recursively unsolvable word problems for modular lattices and diagram-chasing. J. Algebra26, 385–399 (1973)Google Scholar
  15. 15.
    Hutchinson, G.: Embedding and unsolvability theorems for modular lattices. Algebra Universalis7, 47–84 (1977)Google Scholar
  16. 16.
    Lyndon, R.C., Schupp, P.E.: Combinatorial group theory. Berlin, Heidelberg, New York: Springer 1977Google Scholar
  17. 17.
    Lipshitz, L.: The undecidability of the word problem for projective geometries and modular lattices. Trans. Am. Math. Soc.193, 171–180 (1974)Google Scholar
  18. 18.
    v. Neumann, J.: Continuous geometry. Princeton, NJ: Princeton University Press 1960Google Scholar
  19. 19.
    Nazarova, L.A.: Partially ordered sets with an infinite number of indecomposable representations. In: Representations of algebras. Ottawa 1974. Dlab, V., Gabriel, P. (eds.). Lecture Notes in Mathematics, Vol. 488. Berlin, Heidelberg, New York: Springer 1975Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Christian Herrmann
    • 1
  1. 1.FB MathematikTechnische Hochschule DarmstadtDarmstadtFederal Republic of Germany

Personalised recommendations