Skip to main content
Log in

Bernstein theorems for harmonic morphisms from R3 andS 3

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Baird, P.: Harmonic maps with symmetry, harmonic morphisms and deformations of metrics. Research Notes in Mathematics, Vol. 87, Boston London Melbourne: Pitman 1983

    Google Scholar 

  2. Baird, P.: Harmonic morphisms onto Riemann surfaces and generalized analytic functions. Ann. Inst. Fourier, Grenoble37, 135–173 (1987)

    Google Scholar 

  3. Baird, P., Eells, J.: A conservation law for harmonic maps. In: Looijenga, E., Siersma, D., Takens, F. (eds.). Geometry Symposium Utrecht 1980, Proceedings. Lecture Notes Mathematics, Vol. 894, pp. 1–25. Berlin Heidelberg New York: Springer 1981

    Google Scholar 

  4. Bernard, A., Campbell, E.A., Davie, A.M.: Brownian motion and generalized analytic and inner functions. Ann. Inst. Fourier, Grenoble29, 207–228 (1979)

    Google Scholar 

  5. Chern, S.S.: Minimal surfaces in an Euclidean space ofN dimensions. In: Cairns, S.S. (ed.) Differential and combinatorial topology, pp. 187–198 Princeton: Princeton University Press 1965

    Google Scholar 

  6. Conway, J.B.: Functions of one complex variable. Berlin Heidelberg New York: Springer 1983

    Google Scholar 

  7. Eells, J., Polking, J.C.: Removable singularities of harmonic maps. Indiana Univ. Math. J.33, 859–871 (1984)

    Google Scholar 

  8. Eells, J., Sampson, J.H.: Harmonic mappings of Riemannian manifolds. Am. J. Math.86, 109–160 (1964)

    Google Scholar 

  9. Fuglede, B.: Harmonic morphisms between Riemannian manifolds. Ann. Inst. Fourier Grenoble28, 107–144 (1978)

    Google Scholar 

  10. Greene, R.E., Wu, H.: Embeddings of open Riemannian manifolds by harmonic functions. Ann. Inst. Fourier, Grenoble12, 415–571 (1962)

    Google Scholar 

  11. Helms, L.L.: Introduction to potential theory. New York London Sydney Toronto: Wiley 1969

    Google Scholar 

  12. Hoffman, D.A., Osserman, R.: The geometry of the generalized Gauss map. Memoirs of the American Math. Soc., Vol. 28, No. 236. Providence: Am. Math. Soc. 1980

    Google Scholar 

  13. Ishihara, T.: A mapping of Riemannian manifolds which preserves harmonic functions. J. Math. Kyoto Univ.19, 215–229 (1979)

    Google Scholar 

  14. Jacobi, C.G.J.: Über eine particuläre Lösung der partiellen Differentialgleichung\(\frac{{\partial ^2 V}}{{\partial x^2 }} + \frac{{\partial ^2 V}}{{\partial y^2 }} + \frac{{\partial ^2 V}}{{\partial z^2 }} = 0\). Crelle Reine Angew. Math.36, 113–134 (1847)

    Google Scholar 

  15. Kamber, F.W., Tondeur, Ph.: The Bernstein problem for foliations. In: Global differential geometry and global analysis. Proceedings Berlin 1984. Lecture Notes Mathematics, Vol. 1156, pp. 216–218 Berlin Heidelberg New York: Springer 1985

    Google Scholar 

  16. Osserman, R.: A survey of minimal surfaces. New York: Van Nostrand Reinhold 1969. Secd. edit.: New York: Dover 1986

    Google Scholar 

  17. Reinhart, B.L.: Differential geometry of foliations. Ergebnisse Math., Vol. 99. Berlin Heidelberg New York: Springer 1983

    Google Scholar 

  18. Ruh, E.A., Vilms, J.: The tension field of the Gauss map. Trans. Am. Math. Soc.149, 569–573 (1970)

    Google Scholar 

  19. Siegel, C.L.: Topics in complex function theory. New York London Sydney Toronto: Wiley 1969

    Google Scholar 

  20. Steenrod, N.: The topology of fibre bundles. Princeton: Princeton University Press 1951

    Google Scholar 

  21. Vaisman, I.: Conformal foliations. Kodai Math. J.2, 26–37 (1979)

    Google Scholar 

  22. Wolf, J.: Spaces of constant curvature. New York St. Louis San Francisco Toronto London Sydney: McGraw-Hill 1967

    Google Scholar 

  23. Wood, J.C.: The Gauss map of a harmonic morphism. In: Cordero, L.A. (ed.) Differential geometry. Research Notes Mathematics, Vol. 131, pp. 149–155. Boston London Melbourne: Pitman 1985

    Google Scholar 

  24. Wood, J.C.: Harmonic morphisms, foliations and Gauss maps. In: Siu, Y.T. (ed.) Complex differential geometry and nonlinear differential equations. Contemporary Mathematics, Vol. 49, pp. 145–183. Providence: Am. Math. Soc. 1986

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baird, P., Wood, J.C. Bernstein theorems for harmonic morphisms from R3 andS 3 . Math. Ann. 280, 579–603 (1988). https://doi.org/10.1007/BF01450078

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01450078

Keywords

Navigation