Advertisement

Mathematische Annalen

, Volume 287, Issue 1, pp 259–273 | Cite as

Geometrically fibred two-knots

  • J. A. Hillman
  • S. P. Plotnick
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AR] Aitchison, I.R., Rubinstein, J.H.: Fibred knots and involutions on homotopy spheres, in: Four-manifold theory. C.McA. Gordon, R.C. Kirby (eds.), CONM 35, pp. 1–74 Providence American Mathematical Society, 1984, 74Google Scholar
  2. [CS] Cappell, S., Shaneson, J.L.: There exist inequivalent knots with the same complement. Ann. Math.103, 349–353 (1976)Google Scholar
  3. [D] Dunbar, W.: Geometric orbifolds, Rev. Mat. U. Complutense Mad.1, 67–99 (1988)Google Scholar
  4. [Gl] Gluck, H.: The embedding of two-spheres in the four-sphere. Trans. Am. Math. Soc.104, 308–333 (1962)Google Scholar
  5. [Go] Gordon, C.McA.: Knots in the 4-sphere, Comment. Math. Helv.51, 585–596 (1976)Google Scholar
  6. [H1] Hillman, J.A.: Orientability, asphericity and two-knots. Houston J. Math.6, 67–76 (1980)Google Scholar
  7. [H2] Hillman, J.A.: Abelian normal subgroups of two-knot groups. Comment. Math. Helv.61, 122–148 (1986)Google Scholar
  8. [H3] Hillman, J.A.: The algebraic characterization of the exteriors of certain two-knots. Invent. Math.97, 195–207 (1989)Google Scholar
  9. [HW] Hillman, J.A., Wilson, S.M.J.: On the reflexivity of Cappell-Shaneson 2-knots. Bull. Lond. Math. Soc.Google Scholar
  10. [K] Kervaire, M.A.: Les noeuds de dimensions supérieures. Bull. Soc. Math. Fr.93, 225–271 (1965)Google Scholar
  11. [Mac] MacBeath, A.: Geometrical realization of isomorphisms between plane groups. Bull. Am. Math. Soc.71, 629–630 (1965)Google Scholar
  12. [Mal]Mal'cev, A.: On a class of homogeneous spaces, Transl. Am. Math. Soc.39, 1–33 (1951)Google Scholar
  13. [Mo] Mostow, G.D.: Strong rigidity of locally symmetric spaces. Annals of Mathematics Study 78. Princeton: Princeton University Press, 1973Google Scholar
  14. [NR] Neumann, W.D., Raymond, F.: Seifert manifolds, plumbing, μ-invariant and orientation reversing maps. (Lect. Notes Math., vol 664, pp. 162–196. Berlin Heidelberg New York: Springer, 1978Google Scholar
  15. [Ne] Newman, M.: Integral matrices. New York London: Academic Press, 1972Google Scholar
  16. [O] Olum, P.: Mappings of manifolds and the notion of degree. Ann. Math.,58, 458–480 (1953)Google Scholar
  17. [Pao] Pao, P.S.: Non-linear circle actions on the 4-sphere and twisting spun knots. Topology17, 291–296 (1978)Google Scholar
  18. [P1] Plotnick, S.P.: The homotopy type of four-dimensional knot complements Math. Z.183, 447–471 (1983)Google Scholar
  19. [P2] Plotnick, S.P.: Fibred knots inS 4-twisting, spinning, rolling, surgery, and branching, in: Four-manifold theory CMcA. Gordon, R.C. Kirby (eds.), CONM 35, pp. 436–459. Providence: American Mathematical Society, 1984Google Scholar
  20. [P3] Plotnick, S.P.: Equivariant intersection forms, knots inS 4, and rotations in 2-spheres. Trans. Am. Math. Soc.296, 543–575 (1986)Google Scholar
  21. [PS] Plotnick, S.P. Suciu, A.I.: Fibred knots and spherical space forms. J. Lond. Math. Soc.35, 514–526 (1987)Google Scholar
  22. [RV] Raymond, F., Vasquez, A.T.: 3-Manifolds whose universal coverings are Lie groups. Topology Appl.24, 161–179 (1986)Google Scholar
  23. [S] Scott, G.P.: The geometries of 3-manifolds. Bull. Lond. Math. Soc.15, 401–487 (1983)Google Scholar
  24. [T1] Thurston, W.: Three-dimensional manifolds, Kleinian groups, and hyperbolic geometry. Bull. Am. Math. Soc.6, 357–382 (1982)Google Scholar
  25. [T2] Thurston, W.: Three-manifolds with symmetry, preprint. Princeton University (1982)Google Scholar
  26. [W] Wolf, J.A.: Spaces of constant curvature. MacGraw-Hill, Fifth, edit. Wilmington: Publish or Perish 1984Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • J. A. Hillman
    • 1
  • S. P. Plotnick
    • 2
  1. 1.School of Mathematics, Physics Computing and ElectronicsMacquire UniversityMacquarieAustralia
  2. 2.Department of MathematicsState University of New York at AlbanyAlbanyUSA

Personalised recommendations