Mathematische Annalen

, Volume 287, Issue 1, pp 185–192 | Cite as

The corona theorem for the ball and polydisc

  • Nikola Pandeski


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aleksandroff, B.: The existence of inner functions in the ball (in Russian). Mat. Sb.,118 (160), 147–163 (1982)Google Scholar
  2. 2.
    Carleson, L.: Interpolation by bounded analytic functions and the Corona theorem. Ann. Math.76, 547–559 (1962)Google Scholar
  3. 3.
    Garnett, J.: Bounded analytic functions. New York London: Academic Press 1981Google Scholar
  4. 4.
    Henkin, G.: Holomorphic extension of bounded holomorphic functions from submanifold in general positions in a strong pseudoconvex domain (in Russian). Izv. Akad. Nauk SSSR (Ser. Math.)36, 540–567 (1972)Google Scholar
  5. 5.
    Peter, J.:L estimates for the\(\bar \partial \) problem in a half plane. Acta Math.150, 137–152 (1983)Google Scholar
  6. 6.
    Rudin, W.: Function theory in polydisc. New York Amsterdam: Benjamin 1969Google Scholar
  7. 7.
    Rudin, W.: Function theory in the unit ball ofC n New York: Springer 1980Google Scholar
  8. 8.
    Rudin, W.: Inner Function in the ball ofC n. J. Funct. Anal.50, 100–126 (1983)Google Scholar
  9. 9.
    Rudin, W.: New constructions of functions holomorphic in the unit ball ofC n. Expository lectures form CBMS Regional Conference held in Michigan State University (1985)Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Nikola Pandeski
    • 1
  1. 1.Institut of MathematicsPMFSkopjeYugoslavia

Personalised recommendations