Advertisement

Mathematische Annalen

, Volume 287, Issue 1, pp 181–184 | Cite as

Projective modules over real affine algebras

  • M. Ojanguren
  • R. Parimala
Article

Keywords

Projective Module 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bertini, E.: Introduzione alla geometria proiettiva degli iperspazi. II ed., Messina. 1923Google Scholar
  2. 2.
    Bhatwadekar, S.M., Ischebeck, F., Ojanguren M., Schabhüser, G.: Strongly algebraic vector bundles over ℝd, to appearGoogle Scholar
  3. 3.
    Bochnak, J., Coste, M., Roy, M.-F.: Géométrie algébrique réelle. Ergebnisse der Mathematik. Berlin, Heidelberg New York: Springer 1987Google Scholar
  4. 4.
    Milnor, J.: Introduction to algebraicK-theory, Annals of Math. Studies 72, Princeton, 1971Google Scholar
  5. 5.
    Mohan Kumar, N., Murthy, M.P.: Algebraic cycles and vector bundles over affine three-folds. Ann. Math.116, 579–591 (1982)Google Scholar
  6. 6.
    Serre, J.-P.: Sur la dimension cohomologique des groupes profinis. Topology3, 413–420 (1965)Google Scholar
  7. 7.
    Swan, R.G.: Vector bundles and projective modules. Trans. Am. Math. Soc.105, 264–277 (1968).Google Scholar
  8. 8.
    Swan, R.G.: A cancellation theorem for projective modules in the metastable range. Invent. Math.27, 23–43 (1974)Google Scholar
  9. 9.
    Suslin, A.A.: Cancellation for affine varieties (in Russian). Zap. Nauchn. Sem. LOMI Stek.114, 187–195 (1982)Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • M. Ojanguren
    • 1
  • R. Parimala
    • 2
  1. 1.Institut de mathématiquesUniversité de LausanneLausanneSwitzerland
  2. 2.School of MathematicsTata Institute of Fundamental ResearchBombayIndia

Personalised recommendations