Advertisement

Mathematische Annalen

, Volume 287, Issue 1, pp 175–180 | Cite as

Ricci-flat Kähler metrics on affine algebraic manifolds. II

  • Shigetoshi Bando
  • Ryoichi Kobayashi
Article

Keywords

Manifold Algebraic Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aubin, T.: Nonlinear analysis on manifolds, Monge-Ampère equations. Berlin Heidelberg New York: Springer 1982Google Scholar
  2. 2.
    Bando, S., Kobayashi, R.: Ricci-flat Kähler metrics on affine algebraic manifolds. In: Geometry and analysis on manifolds. Lect. Notes Math. 1339, Sunada, T. (ed.) pp. 20–31 Berlin Heidelberg New York: Springer 1988Google Scholar
  3. 3.
    Bourguignon, J.P. et al.: Première class de Chern et courbure de Ricci: preuve de la conjecture de Calabi. Astérisque58 (1978)Google Scholar
  4. 4.
    Calabi, E.: Métriques kähleriennes et fibrés holomorphes. Ann. Sci. Ec. Norm. Supér. IV. Sér12, 269–294 (1979)Google Scholar
  5. 5.
    Calabi, E.: Isometric families of Kähler structures. In: Chern Symp. 1979, Hsiang, W.-Y., et al. (eds.) pp. 23–39. Berlin Heidelberg New York: Springer 1980Google Scholar
  6. 6.
    Calabi, E.: Extremal Kähler metrics, in: Seminar on differential geometry. Yau, S.-T. (ed.) Ann. Math. Stud. 102, 259–290. Princeton: Princeton University Press 1982Google Scholar
  7. 7.
    Cheng, S.-Y., Yau, S.-T.: Differential equations on Riemannian manifolds and their geometric applications. Commun. Pure Appl. Math.28, 333–354 (1975)Google Scholar
  8. 8.
    Cheng, S.-Y., Yau, S.-T.: On the existence of a complete Kähler-Einstein metric on noncompact complex manifolds and regularity of Fefferman's equation. Commun. Pure Appl. Math.32, 507–544 (1980)Google Scholar
  9. 9.
    Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order (2nd edit.). Berlin Heidelberg New York: Springer 1983Google Scholar
  10. 10.
    Kobayashi, S.: Differential geometry of complex vector bundles. Publ. Math. Soc. Japan 15. Tokyo: Iwanami Shoten and Princeton: Princeton Univ. Press 1987Google Scholar
  11. 11.
    Kobayashi, S., Ochiai, T.: On complex manifolds with positive tangent bundles. J. Math. Soc. Japan22, 499–525 (1970)Google Scholar
  12. 12.
    Mok, N.: Private communication, 1988Google Scholar
  13. 13.
    Nadel, A.M.: Multiplier ideal sheaves and Kähler-Einstein metrics. PreprintGoogle Scholar
  14. 14.
    Siu, Y.-T.: Lectures on Hermitian-Einstein metrics for stable bundles and Kähler-Einstein metrics. Basel Boston: Birkhäuser 1987Google Scholar
  15. 15.
    Tian, G.: On Kähler-Einstein metrics on certain Kähler manifolds withc 1 (M)>0. Invent. Math.89, 225–246 (1987)Google Scholar
  16. 16.
    Yau, S.-T.: Harmonic functions on complete Riemannian manifolds. Commun. Pure Appl. Math.28, 201–228 (1975)Google Scholar
  17. 17.
    Yau, S.-T.: On the Ricci curvature of a compact Kähler manifold and complex Monge-Ampère equation I. Commun. Pure Appl. Math.31, 339–411 (1978)Google Scholar
  18. 18.
    Yau, S.-T.: A general Schwarz lemma for Kähler manifolds. Am. J. Math.100, 197–203 (1978)Google Scholar
  19. 19.
    Yau, S.-T.: Nonlinear analysis in geometry, L'Enseig. Math.33, 109–158 (1987)Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Shigetoshi Bando
    • 1
    • 3
  • Ryoichi Kobayashi
    • 2
  1. 1.Max-Plank-Institut für MathematikBonn 3Federal Republic of Germany
  2. 2.Department of Mathemetics, College of Arts and SciencesUniversity of TokyoTokyoJapan
  3. 3.Mathematical InstituteTôhoku UniversitySendaiJapan

Personalised recommendations