Mathematische Annalen

, Volume 287, Issue 1, pp 107–134 | Cite as

Equivalences between isolated hypersurface singularities

  • Max Benson
  • Stephen S. -T. Yau


Hypersurface Singularity Isolate Hypersurface Singularity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benson, M.: Environments: An algebraic programming technique. Technical Report 86-10, University of Minnesota at Duluth, Department of Computer Science (1986)Google Scholar
  2. 2.
    Benson, M. and S.-T. Yau, S.: Lie algebras and their representations arising from isolaned singularities: computer methods in calculating their cohomology. Advanced Studies in Pure Mathematics 8, 1986, Complex Analytic Singularities pp. 3–58Google Scholar
  3. 3.
    Ephraim, R.:C and analytic equivalence of singularities. Complex analysis, volumeI: Geometry of singularities, 11–32 (1972)Google Scholar
  4. 4.
    Mather, J.N.: Stability ofC mappings, III: Finitely determined map-germs. Publ. Math. Inst. Hautes Etud. Sci.35, 127–156 (1968)Google Scholar
  5. 5.
    Mather, J.N.: Stability ofC mappings, IV: Classification of Stable Germs byR-Algebras. Publ. Math. Inst. Hautes Etud. Sci.37, 223–248 (1970)Google Scholar
  6. 6.
    Mather, J.N. and S.-T. Yau, S.: Classification of isolated hypersurface singularities by their moduli algebras. Invent. Math.69, 243–251 (1982)Google Scholar
  7. 7.
    Saito, K.: Quasi-homogene isolierte Singularitäten von Hyperflächen. Invent. Math.14, 123–142 (1971)Google Scholar
  8. 8.
    Shoshitaishvili, A.N.: Functions with isomorphic Jacobian idelas. Funct. Anal. Appl.10, 128–133 (1976)Google Scholar
  9. 9.
    S.-T. Yau, S.: Criterions for right-left equivalence and right equivalence of holomorphic functions with isolated critical points. Proc. Symp. Pure Math.41, 291–297 (1984)Google Scholar
  10. 10.
    S.-T. Yau, S.: Milnor algebras and equivalence relations among holomorphic functions. Bulletin Am. Math. Soc., New Ser.9, 235–239 (1983)Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Max Benson
    • 1
  • Stephen S. -T. Yau
    • 2
  1. 1.Department of Computer ScienceUniversity of Minnesota at DuluthDuluthUSA
  2. 2.Department of MathematicsUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations