Mathematische Annalen

, Volume 287, Issue 1, pp 19–33 | Cite as

Transversal Lie group actions on abstract CR manifolds

  • M. S. Baouendi
  • Linda Preiss Rothschild


Manifold Group Action 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baouendi, M.S., Chang, C.H., Treves, F.: Microlocal hypo-analyticity and extension of CR functions. J. Differ. Geom.18, 331–391 (1983)Google Scholar
  2. 2.
    Baouendi, M.S., Rothschild, L.P.: Analytic approximation for homogeneous solutions of invariant differential operators on Lie groups. Asterisque131, 189–199 (1985)Google Scholar
  3. 3.
    Baouendi, M.S., rothschild, L.P.: Normal forms for generic manifolds and holomorphic extension of CR functions. J. Differ. Geom.25, 431–467 (1987)Google Scholar
  4. 4.
    Baouendi, M.S., Rothschild, L.P.: Embeddability of abstract CR structures and integrability of related systems. Ann. Inst. Fourier37, 131–141 (1987)Google Scholar
  5. 5.
    Baouendi, M.S., Rothschild, L.P.: Extension of holomorphic functions in generic wedges and their wave front sets. Commun. Part. Differ. Equations13, 1441–1466 (1988)Google Scholar
  6. 6.
    Baouendi, M.S., Rothschild, L.P., Treves, F.: CR structures with group action and extendability of CR functions. Invent. Math.82, 359–396 (1985)Google Scholar
  7. 7.
    Jacobowitz, H.: The canonical bundle and realizable CR hypersurfaces. (preprint)Google Scholar
  8. 8.
    Newlander, A., Nirenberg, L.: Complex coordinates in almost complex manifolds. Ann. Math.65, 391–404 (1957)Google Scholar
  9. 9.
    Nirenberg, L.: A Complex Frobenius Theorem. Seminar on analytic functionsI, pp. 172–189. Princeton (1957)Google Scholar
  10. 10.
    Nomizu, K.: Lie groups and differential geometry. Math. Soc. Japan (1956)Google Scholar
  11. 11.
    Sjöstrand, J.: Singularités analytiques microlocales. Astérisque95, 1–166 (1982)Google Scholar
  12. 12.
    Tanaka, N.: On the pseudoconformal geometry of hypersurfaces of the space ofn complex variables. J. Math. Soc. Japan14, 397–429 (1962)Google Scholar
  13. 13.
    Trepreau, J.-M.: Une fonction CR non décomposable en somme de valeurs au bord de fonctions holomorphes, (unpublished)Google Scholar
  14. 14.
    Varadarajan, V.S.: Lie groups, Lie algebras, and their representations. Englewood Cliffs, NJ: Prentice-Hall 1974Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • M. S. Baouendi
    • 1
    • 2
  • Linda Preiss Rothschild
    • 3
  1. 1.Department of MathematicsPurdue UniversityW. LafayetteUSA
  2. 2.University of California, San DiegoLa JollaUSA
  3. 3.Department of MathematicsUniversity of California, San DiegoLa JollaUSA

Personalised recommendations