Advertisement

Mathematische Annalen

, Volume 292, Issue 1, pp 319–327 | Cite as

On theK-theory of the classifying space of a discrete group

  • Alejandro Adem
Article

Mathematics Subject Classification (1991)

55R35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A]
    Ash, A.: Farrell cohomology of GLn(ℤ). Isr. J. Math. (to appear)Google Scholar
  2. [A-S1]
    Atiyah, M.F., Segal, G.B.: EquivariantK-theory and completion. J. Differ. Geom.3, 1–18 (1969)Google Scholar
  3. [A-S2]
    Atiyah, M.F., Segal, G.B.: UnpublishedGoogle Scholar
  4. [B]
    Brown K.: Cohomology of groups. (Grad. Texts Math., vol. 87) Berlin Heidelberg New York: Springer 1982Google Scholar
  5. [B1]
    Brown, K.: Euler characteristics of discrete groups andG-spaces. Invent. Math.27, 229–264 (1974)Google Scholar
  6. [B2]
    Brown, K.: Complete Euler characteristics and fixed-point theory. J. Pure Appl. Algebra24, 103–121 (1982)Google Scholar
  7. [B3]
    Brown, K.: High-dimensional cohomology of discrete groups. Proc. Natl. Acad. Sci. USA73 (No. 6), 1795–1797 (1976)Google Scholar
  8. [E-G]
    Eilenberg, S., Ganea, T.: On the Lusternik-Schnirelmann category of abstract groups. Ann. Math.65, 517–518 (1957)Google Scholar
  9. [H]
    Hopkins, M.: Characters and elliptic cohomology. In: Salamon, Steer, Sutherland (eds.) Advances in homotopy theory. (Lond. Math. Soc. Lect. Note Ser., vol. 139), Cambridge New York London: Cambridge University Press 1989Google Scholar
  10. [H-H]
    Hirzebruch, F., Höfer, T.: On the Euler number of an orbifold. Math. Ann.286, 255–260 (1990)Google Scholar
  11. [Se]
    Segal, G.B.: EquivariantK-theory. Publ. Math., Inst. Hautes Étud. Sci.34 (1968)Google Scholar
  12. [S]
    Serre, J-P.: Cohomologie des groupes discretes. Ann. Math. Stud.70, 77–169 (1971)Google Scholar
  13. [So]
    Soulé, C.: The cohomology of SL3ℤ. Topology17, 1–22 (1978)Google Scholar
  14. [tD]
    Tom Dieck, T.: Transformation groups and representation theory. (Lect. Notes Math., vol. 766) Berlin Heidelberg New York: Springer 1979Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Alejandro Adem
    • 1
  1. 1.Mathematics DepartmentUniversity of WisconsinMadisonUSA

Personalised recommendations