Mathematische Annalen

, Volume 292, Issue 1, pp 281–318 | Cite as

Order relations on conjugacy classes and the Kazhdan-Lusztig map

  • N. Spaltenstein


Conjugacy Class Order Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bala, P., Carter, R.W.: Classes of unipotent elements in simple algebraic groups. Math. Proc. Camb. Phil. Soc.79, 401–425 (1976);80, 1–18 (1976)Google Scholar
  2. 2.
    Carter, R.: Conjugacy classes in the Weyl group. In: A. Borel et al.: Seminar on algebraic groups and related finite groups. (Lect. Notes Math., vol. 131). Berlin Heidelberg New York: Springer 1969Google Scholar
  3. 3.
    Kazhdan, D., Lusztig, G.: Fixed point varieties on affine flag manifolds. Isr. J. Math.62, 129–168 (1988)Google Scholar
  4. 4.
    Lusztig, G., Spaltenstein, N.: Induced unipotent classes. J. Lond. Math. Soc. (2)19, 41–52 (1979)Google Scholar
  5. 5.
    Spaltenstein, N.: Polynomials over local fields, nilpotent orbits and conjugacy classes in Weyl groups. Astérisque168, 191–217 (1988)Google Scholar
  6. 6.
    Spaltenstein, N.: A note on the Kazhdan-Lusztig map for even orthogonal Lie algebras. Arch. Math.55, 431–437 (1990)Google Scholar
  7. 7.
    Spaltenstein, N.: Classes unipotentes et sous-groupes de Borel, (Lect. Notes in Math., vol. 946). Berlin Heidelberg New York: Springer 1982Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • N. Spaltenstein
    • 1
  1. 1.Department of MathematicsUniversity of OregonEugeneUSA

Personalised recommendations