Mathematische Annalen

, Volume 292, Issue 1, pp 263–266 | Cite as

On weakly compact operators

  • G. Schlüchtermann


Compact Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Di]
    Diestel, J.: Sequences and series in Banach spaces. Berlin Heidelberg New York: Springer 1984Google Scholar
  2. [DU]
    Diestel, J., Uhl, J.: Vector measures. Am. Math. Soc. Surv.15 (1977)Google Scholar
  3. [Ja]
    James, R.C.: Weak compactness and reflexivity. Isr. J. Math.2, 101–119 (1964)Google Scholar
  4. [PE]
    Pelczyski, A.: On strictly singular and strictly cosingular operators I and II. Bull. Acad. Pol. Sci., Ser. Sci. Math. Astron. Phys.13, 31–36, 37–41 (1965)Google Scholar
  5. [Ta]
    Talagrand, M.: Weak Cauchy sequences inL 1(E). Am. J. Math.106, 703–724 (1984)Google Scholar
  6. [Vo]
    Voigt, J.: On the convex compactness property for the strong operator topology. (Preprint 1990)Google Scholar
  7. [We]
    Weis, L.: A generalization of the Vidav-Jörgens perturbation theorem for semigroups and its application to transport theory. J. Math. Anal. Appl.129, 6–23 (1988)Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • G. Schlüchtermann
    • 1
  1. 1.Mathematisches InstitutUniversität MünchenMünchen 2Federal Republic of Germany

Personalised recommendations