Advertisement

Mathematische Annalen

, Volume 292, Issue 1, pp 241–262 | Cite as

Théorèmes de Sylow génériques pour les groupes réductifs sur les corps finis

  • Michel Broué
  • Gunter Malle
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [Atlas]
    Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: Atlas of finite groups. Oxford: Clarendon Press 1985Google Scholar
  2. [BoTi]
    Borel, A., Tits, J.: Groupes réductifs. Publ. Math., Inst. Hautes Etud. Sci.27, 55–151 (1965)Google Scholar
  3. [Bou]
    Bourbaki, N.: Groupes et algèbres de Lie, Chap. 4, 5 et 6. Paris: Hermann 1968Google Scholar
  4. [Boy]
    Boyce, R.: Cyclotomic polynomials and irreducible representations of finite groups of Lie type. Manuscrit non publiéGoogle Scholar
  5. [Ch]
    Chevalley, C.: Classification des groupes de Lie algébriques. Sémin. C. Chevalley. Paris: Ecole Normale Supérieure 1958Google Scholar
  6. [Ch2]
    Chevalley, C.: Invariants of finite groups generated by reflections. Am. J. Math.77, 778–782 (1955)Google Scholar
  7. [DeLu]
    Deligne, P., Lusztig, G.: Representations of reductive groups over finite fields. Ann. Math.103, 103–161 (1976)Google Scholar
  8. [De]
    Demazure, M.: Données radicielles, exposé XXI, Schémas en groupes III, dirigé par M. Demazure et A. Grothendieck. (Lect. Notes Math., vol. 153) Berlin Heidelberg New York: Springer 1970Google Scholar
  9. [Der]
    Deriziotis, D.I.: The centralizers of semi-simple elements of the Chevalley groupsE 7 andE 8. Tokyo J. Math.6, 191–216 (1983)Google Scholar
  10. [Ga]
    Gager, P.C.: Maximal tori in finite groups of Lie type. Thesis, University of Warwick, 1973Google Scholar
  11. [Sp]
    Springer, T.A.: Linear algebraic groups. (Prog. Math., vol. 9, Coates, J., Helgason, S. eds.) Boston: Birkhäuser 1981Google Scholar
  12. [Sp2]
    Springer, T.A.: Regular elements of finite reflection groups. Invent. Math.25, 159–198 (1974)Google Scholar
  13. [Sp3]
    Springer, T.A.: The order of a finite group of Lie type. In: Amitsur, S.A. et al. (eds.) Algebraists homage: Papers in ring theory and related topics. (Contemp. Math., vol. 13, pp. 81–89) Providence: Am. Math. Soc. 1982Google Scholar
  14. [St]
    Steinberg, R.: Endomorphisms of linear algebraic groups. Mem. Am. Math. Soc.80, Chap. 11 (1968)Google Scholar
  15. [Ti]
    Tits, J.: Uniqueness and presentation of Kac-Moody groups over fields. J. Algebra105, 542–573 (1987)Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Michel Broué
    • 1
  • Gunter Malle
    • 2
  1. 1.Ecole Normale SupérieureD.M.I.ParisFrance
  2. 2.I.W.R.Heidelberg

Personalised recommendations