Advertisement

Mathematische Annalen

, Volume 292, Issue 1, pp 197–240 | Cite as

On ℓ-adic sheaves on Shimura varieties and their higher direct images in the Baily-Borel compactification

  • Richard Pink
Article

Mathematics Subject Classification (1991)

11 G 18 14 F 20 11 F 75 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Artin, M., Mazur, B.: Étale homotopy. (Lect. Notes Math., vol. 100) Berlin Heidelberg New York: Springer 1969Google Scholar
  2. 2.
    Ash, A., Mumford, D., Rapoport, M., Tai, Y.: Smooth compactification of locally symmetric varieties. Lie groups: history, frontiers and applications. Brookline, Mass.: Math. Sci. Press 1975Google Scholar
  3. 3.
    Baily, W. L., Borel, A.: Compactification of arithmetic quotients of bounded symmetric domains. Ann. Math.84, 442–528 (1966)Google Scholar
  4. 4.
    Borel, A.: Introduction aux groupes arithmétiques. Paris: Hermann 1969Google Scholar
  5. 5.
    Borel, A., Serre, J.-P.: Corners and arithmetic groups. Comment Math. Helv.48, 436–491 (1974)Google Scholar
  6. 6.
    Brown, K. S.: Cohomology of groups. (Grad. Texts Math., vol. 87) Berlin Heidelberg New York: Springer 1982Google Scholar
  7. 7.
    Deligne, P.: Varietés de Shimura: interprétation modulaire, et techniques de construction de modèles canoniques. In: Borel A., Casselmann, W. (eds.) Automorphic forms, representations andL-functions. Corvallis 1977. (Proc. Symp. Pure Math., vol. 33, part 2, pp. 247–290) Providence, RI: Am. Math. Soc. 1979Google Scholar
  8. 8.
    Deligne, P.: La conjecture de Weil. II. Publ. Math., Inst. Hautes Étud. Sci.52, 137–251 (1981)Google Scholar
  9. 9.
    Deligne, P., Milne, J.S., Ogus, A., Shih, K.: Hodge cycles, motives, and Shimura varieties. (Lect. Notes Math., vol. 900) Berlin Heidelberg New York: Springer 1982Google Scholar
  10. 10.
    Godement, R.: Théorie des faisceaux, Paris: Hermann 1973Google Scholar
  11. 11.
    Grothendieck, A., Dieudonné, J. A.: Eléments de géométrie algébrique. I. Publ. Math., Inst. Hautes Étud. Sci.4 (1960)Google Scholar
  12. 12.
    Harder, G.: Eisensteinkohomologie arithmetischer Gruppen, allgemeine Aspekte. Preprint Bonn, 70 pp. (1986)Google Scholar
  13. 13.
    Harder, G.: Arithmetische Eigenschaften von Eisensteinklassen, die modulare Konstruktion von gemischten Motiven und von Erweiterungen endlicher Galoismoduln. Preprint Bonn, 103 pp. (1989)Google Scholar
  14. 14.
    Kempf, G., Knudsen, F., Mumford, D., Saint-Donat, B.: Toroidal embeddings. I. (Lect. Notes Math., vol. 339) Berlin Heidelberg New York: Springer 1973Google Scholar
  15. 15.
    Langlands, R. P.: Some contemporary problems with origin in the Jugendtraum. In: Browder, F. E. (ed.) Mathematical developments arising from Hilbert problems. (Proc. Symp. Pure Math., vol. 28, part 2, pp. 401–48) Providence, RI: Am. Math. Soc. 1976Google Scholar
  16. 16.
    Looijenga, E., Rapoport, M.: Weights in the local cohomology of a Baily-Borel compactification. Preprint, 37 pp. (January 1990)Google Scholar
  17. 17.
    Milne, J. S.: The action of an automorphism ofC on a Shimura variety and its special points. In: Artin, M., Tate, J. (eds.) Arithmetic and geometry, Pap. dedic. I. R. Shafarevich, vol. I. (Prog. Math., vol. 35, pp. 239–265) Boston Basel Stuttgart: BirkhäuserGoogle Scholar
  18. 18.
    Milne, J. S.: Canonical models of (mixed) Shimura varieties and automorphic vector bundles. In: Clozel, L., Milne, J. S. (eds.) Automorphic forms, Shimura vatrieties, andL-functions, pp. 283–414. Academic Press (1990)Google Scholar
  19. 19.
    Mumford, D., Fogarty, J.: Geometric invariant theory. Berlin Heidelberg New York: Springer 1982Google Scholar
  20. 20.
    Pink, R.: Arithmetical compactification of mixed Shimura varieties. Dissertation. Bonn (1989)Google Scholar
  21. 21.
    Rapoport, M.: On the shape of the contribution of a fixed point on the boundary. The case ofQ-rank one. Preprint, 8 pp. (1991)Google Scholar
  22. 22.
    Artin, M., Grothendieck, A., Verdier, J. L., et al.: Séminaire de géométrie algébrique 4. Théorie des topos et cohomologie étale des schémas. (Lect. Notes Math., vols. 269, 270, 305) Berlin Heidelberg New York: Springer 1972–73Google Scholar
  23. 23.
    Deligne, P. et al.: Séminaire de géométrie algébrique 41/2. Cohomologie étale. (Lect. Notes Math., vol. 569) Berlin Heidelberg New York: Springer 1977Google Scholar
  24. 24.
    Vogan, D. A.: Representations of real reductive Lie groups. (Prog. Math., vol. 15) Boston Basel Stuttgart: Birkhäuser 1981Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Richard Pink
    • 1
  1. 1.Mathematisches Institut der Universität BonnBonn 1Federal Republic of Germany

Personalised recommendations