Advertisement

Mathematische Annalen

, Volume 292, Issue 1, pp 181–190 | Cite as

Function groups in Kleinian groups

  • Teruhiko Soma
Article

Mathematics Subject Classification (1991)

30F40 57M50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bonahon, F.: Bouts des variétés hyperboliques de dimension 3. Ann. Math.124, 71–158 (1986)Google Scholar
  2. 2.
    Hempel, J.: The finitely generated intersection property for Kleinian groups. In: Rolfsen, D. (ed.), Knot theory and manifolds. (Lect. Notes Math., vol. 1144, pp. 18–24) Berlin Heidelberg New York: Springer 1985Google Scholar
  3. 3.
    Hempel, J.: 3-manifolds. (Ann. Math. Stud., no. 86) Princeton, NJ: Princeton University Press 1976Google Scholar
  4. 4.
    Maskit, B.: Intersections of component subgroups of Kleinian groups. In: Discontinuous groups and Riemann surfaces. (Ann. Math. Stud., no. 79, pp. 349–367) Princeton, NJ: Princeton University Press 1974Google Scholar
  5. 5.
    Maskit, B.: Decomposition of certain Kleinian groups. Acta Math.130, 243–263 (1973)Google Scholar
  6. 6.
    Morgan, J.: On Thurston's uniformization theorem for three-dimensional manifolds. In: Morgan, J., Bass, H. (eds.) The Smith conjecture. New York London: Academic Press 1984Google Scholar
  7. 7.
    Soma, T.: Virtual fibre groups in 3-manifold groups. J. Lond. Math. Soc.43, 337–354 (1991)Google Scholar
  8. 8.
    Soma, T.: 3-manifold groups with the finitely generated intersection property. Trans. Am. Math. Soc. (to appear)Google Scholar
  9. 9.
    Sullivan, D.: A finiteness theorem for cusps. Acta Math.147, 289–299 (1981)Google Scholar
  10. 10.
    Thurston, W.: The geometry and topology of 3-manifolds. (Lect. Notes) Princeton, NJ: Princeton University Press 1978Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Teruhiko Soma
    • 1
  1. 1.Department of MathematicsKyushu Institute of TechnologyKita-KyushuJapan

Personalised recommendations