Advertisement

Mathematische Annalen

, Volume 292, Issue 1, pp 127–147 | Cite as

The distribution of bidegrees of smooth surfaces in Gr(1, P3)

  • Mark Gross
Article

Keywords

Smooth Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arbarello, E., Cornalba, M., Griffiths, P., Harris, J.: Geometry of algebraic curves. Berlin Heidelberg New York: Springer 1985Google Scholar
  2. 2.
    Arrondo, E.: On congruences of lines in the projective space. Ph.D. Thesis, Universidad Complutense de Madrid, 1990Google Scholar
  3. 3.
    Arrondo, E., Sols, I.: Classification of smooth congruences of low degree. J. Reine Angew. Math.393, 199–219 (1989)Google Scholar
  4. 4.
    Arrondo, E., Peskine, C., Sols, I.: Characterization of the spinor bundles by the vanishing of intermediate cohomology. (preprint)Google Scholar
  5. 5.
    Barth, W., Peters, C., Van de Ven, A.: Compact complex surfaces. (Ergeb. Math. Grenzbeg., 3. Folge, vol. 4) Berlin Heidelberg New York: Springer 1984Google Scholar
  6. 6.
    Bogomolov, F.: Holomorphic tensors and vector bundles on projective varieties. Math. USSR, Izv.13, 499–555 (1979)Google Scholar
  7. 7.
    Cossec, F., Dolgachev, I., Verra, A.: Unpublished manuscriptGoogle Scholar
  8. 8.
    Dolgachev, I., Reider, I.: On rank 2 vector bundles withc 12=10 andc 2=3 on Enriques surfaces. (Preprint)Google Scholar
  9. 9.
    Eisenbud, D., Harris, J.: Curves in projective space. Montréal: Les Presses de l'Université de Montréal 1982Google Scholar
  10. 10.
    Fano, G.: Nuove richerce sulle congrueze di Rette del 3° ordine prive di linea singolare. Mem. Accad. Sci. Torino, Cl. Sci. Fis. Mat. Nat.51, 1–80 (1902)Google Scholar
  11. 11.
    Fulton, W.: Intersection theory. (Ergeb. Math. Grenzgeb., 3. Folge, vol. 2) Berlin Heidelberg New York: Springer 1984Google Scholar
  12. 12.
    Goldstein, N.: Scroll surfaces in Gr(1,P 3). In: Collono, A. et al. (eds.) Conference on algebraic varieties of small dimension. Turin, 1985. (Rend. Semin. Mat., Torino, Fasc. Spec., pp. 69–75) Torino: Editrice Univ. Levrotto & Bella 1986Google Scholar
  13. 13.
    Griffiths, P., Harris, J.: Principles of algebraic geometry. New York: Wiley 1978Google Scholar
  14. 14.
    Gross, M.: Surfaces in the four-dimensional Grassmannian. Ph.D. Thesis, U.C. Berkeley, 1990Google Scholar
  15. 15.
    Gross, M.:Surfaces of bidegree (3,n) in Gr(1,P 3). (to appear 1990)Google Scholar
  16. 16.
    Hartshorne, R.: Algebraic geometry. Berlin Heidelberg New York: Springer 1977Google Scholar
  17. 17.
    Hartshorne, R., Rees, F., Thomas, E.: Nonsmoothing of algebraic cycles on Grassmann varieties. Bull. Am. Math. Soc.80 (no. 5), 847–851 (1974)Google Scholar
  18. 18.
    Hernández, R., Sols, I.: Line congruences of low degree. In: Aroca, J.-M. et al., (eds.) Géométrie algébrique et applications. II. Singularités et géométrie complexe, pp. 141–154. Paris: 1987 HermannGoogle Scholar
  19. 19.
    Jessop, C. M.: A treatise on the line complex. Cambridge: Cambridge University Press 1903; reprinted Chelsea, Publishing Company 1969Google Scholar
  20. 20.
    Kleiman, S.: Geometry on Grassmannians and applications to splitting bundles and smoothing cycles. Publ. Math., Inst. Hautes Étud. Sci.36, 281–298 (1969)Google Scholar
  21. 21.
    Miyaoka, Y.: The Chern classes and Kodaira dimension of a minimal variety. In: Oda, T. (ed.) Algebraic geometry. Sendai, 1985. (Adv. Stud. Pure Math., vol. 10, pp. 449–476 Tokyo: Kinokuniya 1987Google Scholar
  22. 22.
    Mumford, D.: Geometric invariant theory. Berlin Heidelberg New York: Springer 1965; 2nd ed. 1982Google Scholar
  23. 23.
    Pollack, A.: Codimension 2 subvarieties of Grassmannians. Ph.D. Thesis, Berkeley, 1978Google Scholar
  24. 24.
    Ran, Z.: Surfaces of order 1 in Grassmannians. J. Reine Angew. Math.368, 119–126 (1986)Google Scholar
  25. 25.
    Reid, M.: Bogomolov's Theoremc 12≦4c 2. In: Nagata, M. (ed.) Intl. Symp. on algebraic geometry, pp. 623–642. Kyoto. 1977. Tokyo: Kinokinuya 1978Google Scholar
  26. 26.
    Roth, L.: Some properties of line congruences. Proc. Camb. Philos. Soc.26, 190–200 (1931)Google Scholar
  27. 27.
    Verra, A.: Smooth surfaces of degree 9 inG(1, 3). Manuscr. Math.63, 417–435 (1988)Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Mark Gross
    • 1
  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA

Personalised recommendations