Advertisement

Mathematische Annalen

, Volume 292, Issue 1, pp 59–84 | Cite as

The primitive ideal space of twisted covariant systems with continuously varying stabilizers

  • Siegfried Echterhoff
Article

Mathematics Subject Classification (1991)

46L05 22D25 22D30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baggett, L.W.: A description of the topology on the dual spaces of certain locally compact groups. Trans. Am. Math. Soc.132, 175–215 (1968)Google Scholar
  2. 2.
    Blattner, R.J.: On induced representations. Am. J. Math.83, 71–98 (1961)Google Scholar
  3. 3.
    Busby, R.C.: Double centralizers and extensions ofC *-algebras. Trans. Am. Math. Soc.132, 79–99 (1968)Google Scholar
  4. 4.
    Dixmier, J.:C *-algebras. Amsterdam: North-Holland 1977Google Scholar
  5. 5.
    Dixmier, J.: Ideal center of aC *-algebra. Duke Math. J.35, 375–382 (1968)Google Scholar
  6. 6.
    Echterhoff, S.: On maximal ideals in certain groupC *-algebras and crossed product algebras. J. Oper. Theory23, 317–338 (1990)Google Scholar
  7. 7.
    Fakler, R.A.: An intertwining number theorem for induced representations. Nanta Math.11, 164–173 (1978)Google Scholar
  8. 8.
    Fell, J.M.G.: The dual spaces ofC *-algebras. Trans. Am. Math. Soc.94, 365–403 (1960)Google Scholar
  9. 9.
    Fell, J.M.G.: A Hausdorff topology on the closed subsets of a locally compact non-Hausdorff space. Proc. Am. Math. Soc.13, 472–476 (1962)Google Scholar
  10. 10.
    Fell, J.M.G.: The structure of algebras of operator fields. Acta Math.106, 237–268 (1962)Google Scholar
  11. 11.
    Fell, J.M.G.: Weak containment and induced representations of groups. Can. J. Math.14, 237–268 (1962)Google Scholar
  12. 12.
    Fell, J.M.G.: Weak containment and induced representations of groups. II. Trans. Am. Math. Soc.110, 424–447 (1964)Google Scholar
  13. 13.
    Fell, J.M.G.: An extension of Mackey's method to Banach *-algebraic bundles. Mem. Am. Math. Soc.90 (1969)Google Scholar
  14. 14.
    Glimm, J.: Locally compact transformation groups. Trans. Am. Math. Soc.101, 124–138 (1961)Google Scholar
  15. 15.
    Glimm, J.: Families of induced representations. Pac. J. Math.12, 885–911 (1962)Google Scholar
  16. 16.
    Gootman, E.C., Rosenberg, J.: The structure of crossed productC *-algebras: Proof of the generalized Effros-Hahn conjecture. Invent. Math.52, 283–298 (1979)Google Scholar
  17. 17.
    Green, P.: The local structure of twisted covariance algebras. Acta Math.140, 191–250 (1978)Google Scholar
  18. 18.
    Greenleaf, F.P.: Invariant means on topological groups and their applications. New York: van Nostrand 1969Google Scholar
  19. 19.
    Joy, K.I.: A description of the Topology on the dual space of a nilpotent Lie group. Pac. J. Math.112, 135–139 (1984)Google Scholar
  20. 20.
    Mackey, G.W.: Induced representations of locally compact groups. Ann. Math.55, 101–139 (1952)Google Scholar
  21. 21.
    Pedersen, G.K.:C *-algebras and their automorphism groups. London: Academic Press 1979Google Scholar
  22. 22.
    Raeburn, I., Rosenberg, J.: Crossed products of continuous-traceC *-algebras by smooth actions. Trans. Am. Math. Soc.305, 1–45 (1988)Google Scholar
  23. 23.
    Raeburn, I., Williams, D.P.: Crossed products by actions which are locally unitary on the stabilizers. J. Funct. Anal.81, 385–431 (1988)Google Scholar
  24. 24.
    Rieffel, M.A.: Induced representations ofC *-algebras. Adv. Math.13, 176–257 (1974)Google Scholar
  25. 25.
    Rieffel, M.A.: Unitary representations of group extensions; an algebraic approach to the theory of Mackey and Blattner. In: Rota, G.-C. (ed.) Studies in analysis. (Adv. Math., Suppl. Stud., vol. 4, pp. 43–82). New York: Academic Press 1979Google Scholar
  26. 26.
    Sauvageot, J.L.: Ideaux primitifs de certains producits croisés. Math. Ann.281, 51–76 (1977)Google Scholar
  27. 27.
    Sauvageot, J.L.: Ideaux primitifs induits dans les produits croisés. J. Funct. Anal.32, 381–392 (1979)Google Scholar
  28. 28.
    Schochetman, I.: The dual topology of certain group extensions. Adv. Math.35, 113–128 (1980)Google Scholar
  29. 29.
    Schochetman, I.: Topology and the duals of certain locally compact groups. Trans. Am. Math. Soc.150, 477–489 (1970)Google Scholar
  30. 30.
    Takesaki, M.: Covariant representations ofC *-algebras and their locally compact automorphism groups. Acta Math.119, 273–303 (1967)Google Scholar
  31. 31.
    Williams, D.P.: The topology on the primitive ideal space of transformation groupC *-algebras and C.C.R. transformation groupC *-algebras. Trans. Am. Math. Soc.266, 335–359 (1981)Google Scholar
  32. 32.
    Williams, D.P.: Transformation groupC *-algebras with continuous trace. J. Funct. Anal.41, 40–76 (1981)Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Siegfried Echterhoff
    • 1
  1. 1.Fachbereich Mathematik-InformatikUniversität-Gesamthochschule PaderbornPaderbornFederal Republic of Germany

Personalised recommendations