Mathematische Annalen

, Volume 292, Issue 1, pp 43–58 | Cite as

On 0-dimensional complete intersections

  • Martin Kreuzer

Mathematics Subject Classification (1991)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BV]
    Bruns, W., Vetter, U.: Determinantal rings. (Lect. Notes Math., vol. 1327) Berlin Heidelberg New York: Springer 1988Google Scholar
  2. [C]
    Coandâ, I.: The Chern classes of the stable rank 3 vector bundles on ℙ3. Math. Ann.273, 65–79 (1985)Google Scholar
  3. [DGO]
    Davis, E., Geramita, A. V., Orecchia, F.: Gorenstein algebras and the Cayley-Bacharach theorem. Proc. Am. Math. Soc.93, 593–597 (1985)Google Scholar
  4. [DM]
    Davis, E., Maroscia, P.: Complete intersections in ℙ3: Cayley-Bacharach characterizations. In: Greco, S., Strano, R. (eds.), Complete intersections. Acireale 1983. (Lect. Notes Math., vol. 1092, pp. 253–269) Berlin Heidelberg New York: Springer 1984Google Scholar
  5. [GH]
    Griffiths, P., Harris, J.: Residues and zero-cycles, on algebraic varieties. Ann. Math.108, 461–505 (1978)Google Scholar
  6. [GW]
    Goto, S., Watanabe, K.: On graded rings I. J. Math. Soc. Japan30, 179–213 (1978)Google Scholar
  7. [Ha1]
    Hartshorne, R.: Algebraic geometry. (Grad. Texts. Math., vol. 52) Berlin Heidelberg New York: Springer 1977Google Scholar
  8. [Ha2]
    Hartshorne, R.: Stable reflexive sheaves. Math. Ann.254, 121–176 (1980)Google Scholar
  9. [Ho]
    Horrocks, G.: Vector bundles on the punctured spectrum of a local ring. Proc. Lond. Math. Soc.14, 689–713 (1964)Google Scholar
  10. [K1]
    Kreuzer, M.: Vector bundles with good sections. The Curves Seminar at Queen's vol. VII. (Queen's Pap. Pure Appl. Math., vol. 85) Kingston: Queen's University 1990Google Scholar
  11. [K2]
    Kreuzer, M.: Vektorbündel und der Satz von Cayley-Bacharach. Dissertation. (Regensburger Math. Schr. vol 21) Universität Regensburg 1989Google Scholar
  12. [KK]
    Kreuzer, M., Kunz, E.: Traces in strict Frobenius algebras and strict complete intersections. J. Reine Angew. Math.381, 181–204 (1987)Google Scholar
  13. [PS]
    Peskine, C., Szpiro, L.: Liaisons des variétés algébriques I. Invent. Math.26, 271–302 (1974)Google Scholar
  14. [S]
    Serre, J.P.: Sur les modules projectivs. (Sémin. Dubreil14, Fasc. 1, exposé 2 1960/61) Paris: Secr. Math. 1963Google Scholar
  15. [W]
    Watanabe, K.: Study of algebras with straightening laws of dimension 2. In: Algebraic and topological theories — to the memory of Dr. Takehiko Miyata., pp. 622–639, Tokyo 1985Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Martin Kreuzer
    • 1
  1. 1.Fakultät für MathematikUniversität RegensburgRegensburgFederal Republic of Germany

Personalised recommendations