Advertisement

Mathematische Annalen

, Volume 292, Issue 1, pp 1–12 | Cite as

Defects of cusp singularities and the classification of Hilbert modular threefolds

  • H. G. Grundman
Article

Keywords

Cusp Singularity Modular Threefolds 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ehlers, F.: Eine Klasse komplexer Mannigfaltigkeiten und die Auflösung einiger isolierter Singularitäten. Math. Ann.218, 127–156 (1975)CrossRefGoogle Scholar
  2. 2.
    Grundman, H.G.: The arithmetic genus of Hilbert modular varieties over non-Galois cubic fields, J. Number Theory37, 343–365 (1991)Google Scholar
  3. 3.
    Hirzebruch, F.: Topological methods in algebraic geometry, 3rd edn. Berlin Heidelberg New York: Springer 1978Google Scholar
  4. 4.
    Hirzebruch, F., Van de Van, A.: Hilbert modular surfaces and the classification of algebraic surfaces. Invent. Math.23, 1–29 (1974)Google Scholar
  5. 5.
    Hirzebruch, F., Zagier, D.: Classification of Hilbert modular surfaces. In: Complex analysis and algebraic geometry. Cambridge: University Press and Iwanami Shoten 43-77, 1977Google Scholar
  6. 6.
    Knöller, F.W.: Beispiele dreidimensionaler Hilbertsher Modulmannigfaltigkeiten von allgemeinem Typ. Manuscr. Math.37, 135–161 (1982)Google Scholar
  7. 7.
    Niven, I., Zuckerman, H.S.: Lattice points and polygonal area. Am. Math. Monthly74, 1195–1200 (1967)Google Scholar
  8. 8.
    Pick, G.: Geometrisches zur Zahlenlehre. Sitzungsberichte des deutschen naturwissenschaftlich-medizinischen Vereins für Böhmen “Lotos” in Prag, Ser. 2, XIX, 311–319 (1899)Google Scholar
  9. 9.
    Stanley, R.P.: Decompositions of rational convex polytopes. Ann. Discrete Math.6, 333–342 (1980)Google Scholar
  10. 10.
    Thomas, E.: Fundamental units for orders in certain cubic number fields. J. Reine Angew. Math.310, 33–55 (1979)Google Scholar
  11. 11.
    Thomas, E.: Defects of cusp singularities. Math. Ann.264, 397–411 (1983)Google Scholar
  12. 12.
    Thomas, E., Vasquez, A.T.: On the resolution of cusp singularities and the Shintani decomposition in totally real cubic number fields. Math. Ann.247, 1–20 (1980)Google Scholar
  13. 13.
    Thomas, E., Vasquez, A.T.: Rings of Hilbert modular forms. Compos. Math.48, 139–165 (1983)Google Scholar
  14. 14.
    Weisser, D.: The arithmetic genus of the Hilbert modular variety and the elliptic fixed points of the Hilbert modular group. Math. Ann.257, 9–22 (1981)Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • H. G. Grundman
    • 1
  1. 1.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations