Advertisement

Mathematische Annalen

, Volume 285, Issue 2, pp 333–342 | Cite as

Variants of Littlewood-Paley theory

  • Michael Cowling
  • Gero Fendler
  • John J. F. Fournier
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BL] Bergh, J., Löfström, J.: Interpolation spaces: an introduction. Grundl. der math. Wiss. 223. Berlin Heidelberg New York: Springer 1976Google Scholar
  2. [CRS] Coifman, R.R., Rubio de Francia, J.L., Semmes, S.: Multiplicateurs de Fourier dansL p(R) et estimations quadratiques. C. R. Acad. Sci. Paris, Sér. I,306, 351–354 (1988)Google Scholar
  3. [CW] Coifman, R.R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc.83, 569–645 (1977)Google Scholar
  4. [C] Cowling, M.: An application of Littlewood-Paley theory in harmonic analysis. Math. Ann.241, 83–96 (1979)Google Scholar
  5. [EG] Edwards, R.E., Gaudry, G.I.: Littlewood-Paley and multiplier theory. Ergebn. der Math. und ihrer Grenzg. Berlin Heidelberg New York: Springer 1977Google Scholar
  6. [F] Fendler, G.: AnL p-version of a theorem of D.A.. Raikov. Ann. Inst. Fourier35, 125–135 (1985)Google Scholar
  7. [LP] Lions, J.-L., Peetre, J.: Sur une classe d'espaces d'interpolation. Publ. Math. Inst. Hautes Etud. Sci.19, 5–68 (1964)Google Scholar
  8. [LMR] Littman, W., Mc Carthy, C., Rivière, N.: Non-existence ofL p-estimates for certain translation invariant operators. Studia Math.30, 219–229 (1968)Google Scholar
  9. [O'N] O'Neil, R.: Convolution operators andL(p,qq) spaces. Duke Math. J.30, 129–143 (1963)Google Scholar
  10. [R] Rubio de Francia, J.L.: A Littlewood-Paley inequality for arbitrary intervals. Rev. Mat. Iberoam.1 (2), 1–14 (1985)Google Scholar
  11. [S] Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton Math. Series30. Princeton, Princeton University Press: 1970Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Michael Cowling
    • 1
  • Gero Fendler
    • 2
  • John J. F. Fournier
    • 3
  1. 1.School of MathematicsUniversity of New South WalesKensingtonAustralia
  2. 2.Fachbereich 9 MathematikUniversität des SaarlandesSaarbrückenFederal Republic of Germany
  3. 3.Department of MathematicsUniversity of British ColumbiaVancouverCanada

Personalised recommendations