Advertisement

Mathematische Annalen

, Volume 285, Issue 2, pp 297–307 | Cite as

Exponentially bounded indefinite functions

  • Marco Thill
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berg, C., Christensen, J.P.R., Maserick, P.H.: Sequences with finitely many negative squares. J. Funct. Anal.79, 260–287 (1988)Google Scholar
  2. 2.
    Berg, C., Christensen, J.P.R., Ressel, P.: Harmonic analysis on semigroups. Berlin Heidelberg New York: Springer 1984Google Scholar
  3. 3.
    Berg, C., Maserick, P.H.: Exponentially bounded positive definite functions. Ill. J. Math.28, 162–179 (1984)Google Scholar
  4. 4.
    Bognár, J.: Indefinite inner product spaces. Berlin Heidelberg New York: Springer 1974Google Scholar
  5. 5.
    Iohvidov, I.S., Kre in, M.G.: Spectral theory of operators in spaces with an indefinite metric I. Tr. Mosk. Mat. Obšč.5, 367–432 (1956); (Russian) [Engl. Transl.: Am. Math. Soc. T Transl.13, 105-175 (1960)]Google Scholar
  6. 6.
    Iohvidov, I.S., Kre in, M.G., Langer, H.: Introduction to the spectral theory of operators in spaces with an indefinite metric. Berlin: Akademie-Verlag 1982Google Scholar
  7. 7.
    Naimark, M.A.: On commuting unitary operators in spaces with an indefinite metric. Acta. Sci. Math. Szeged.24, 177–189 (1963)Google Scholar
  8. 8.
    Sasvári, Z.: Indefinite functions on commutative groups. Monatsh. Math.100, 223–238 (1985)Google Scholar
  9. 9.
    Sasvári, Z.: Definitizability of certain functions and the existence of eigenvectors of unitary operators in Pontrjagin spaces. Math. Nachr.135, 67–72 (1988)Google Scholar
  10. 10.
    Szafraniec, F.H.: Dilations on involution semigroups. Proc. Am. Math. Soc.66, 30–32 (1977)Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Marco Thill
    • 1
  1. 1.Department of MathematicsUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations