Advertisement

Mathematische Annalen

, Volume 285, Issue 2, pp 289–295 | Cite as

Fields of definition for some Hodge cycles

  • Salman Abdulali
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdulali, S.: Zeta functions of Kuga fiber varieties. Duke Math. J.57, 333–345 (1988)Google Scholar
  2. 2.
    Addington, S.: Equivariant holomorphic maps of symmetric domains. Duke Math. J.55, 65–88 (1987)Google Scholar
  3. 3.
    Borovoi, M.V.: Langlands' conjecture concerning conjugation of connected Shimura varieties. Sel. Math. Sov.3, 3–39 (1984)Google Scholar
  4. 4.
    Deligne, P.: Travaux de Shimura. Sém. Bourbaki exp. 389. (Lect. Notes Math., vol. 244, pp. 123–165) Berlin Heidelberg New York: Springer 1971Google Scholar
  5. 5.
    Deligne, P.: Variétés de Shimura: Interprétation modulaire, et techniques de construction de modèles canoniques. In: Automorphic forms, representations, andL-functions. (Proc. Symp. Pure Math. Vol. 33 Part 2, pp. 247–290) Providence, RI: Amer. Math. Soc. 1979Google Scholar
  6. 6.
    Deligne, P. (notes by Milne, J.S.): Hodge cycles in abelian varieties. In: Deligne, P., Milne, J.S., Ogus, A., Shih, K.-y.: Hodge cycles, motives, and Shimura varieties. (Lect. Notes Math., vol. 900, pp. 9–100) Berlin Heidelberg New York: Springer 1982Google Scholar
  7. 7.
    Milne, J.S.: The action of an automorphism of 294-1 on a Shimura variety and its special points. In: Arithmetic and geometry, Papers dedicated to I.R. Shafarevich on the occasion of his sixtieth birthday, Vol. 1. (Progress in Math., Vol. 35, pp. 239–265) Cambridge, Mass.: Birkhäuser 1983Google Scholar
  8. 8.
    Milne, J.S., Shih, K.-y.: Conjugates of Shimura varieties. In: Deligne, P., Milne, J.S., Ogus, A., Shih, K.-y.: Hodge cycles, motives, and Shimura varieties. (Lect. Notes Math., vol. 900, pp. 280–356) Berlin Heidelberg New York: Springer 1982Google Scholar
  9. 9.
    Mumford, D.: A note of Shimura's paper “Discontinuous groups and abelian varieties.” Math. Ann.181, 345–351 (1969)Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Salman Abdulali
    • 1
  1. 1.Department of Mathematics/Computer ScienceClark UniversityWorcesterUSA

Personalised recommendations