Mathematische Annalen

, Volume 285, Issue 2, pp 265–288 | Cite as

L q -L r estimates for solutions of the nonstationary stokes equations in an exterior domain and the Navier-Stokes initial value problems inL q spaces

  • Hirokazu Iwashita


Exterior Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beirão da Veiga, H.: Existence and asymptotic behaviour for strong solutions of the Navier-Stokes equations in the whole space. Indiana Univ. Math. J.36, 149–166 (1987)Google Scholar
  2. 2.
    Bogovskii, M.E.: Solution of the first boundary value problem for the equation of continuity of an incompressible medium. Sov. Math. Dokl.20, 1094–1098 (1978)Google Scholar
  3. 3.
    Bogovskii, M.E.: Solution for some vector analysis problems connected with operators div and grad. In: Theory of cubature formulas and the application of functional analysis to problems of mathematical physics. (Trudy Sem. S.L. Sobolev, No. 1, pp. 5–40) Novosibirsk: Akad. Nauk SSSR Sibirsk. Otdel., Inst. Mat. 1980Google Scholar
  4. 4.
    Borchers, W., Sohr, H.: On the semigroup of the Stokes operator for exterior domains inL q-spaces. Math. Z.196, 415–425 (1987)Google Scholar
  5. 5.
    Dunford, N., Schwartz, J.T.: Linear operators I. New York: Wiley-Interscience 1966Google Scholar
  6. 6.
    Edmunds, D.E., Evans, W.D.: Spectral theory and differential operators. Oxford: Oxford University Press 1987Google Scholar
  7. 7.
    Fabes, E.B., Jones, B.F., Riviere, N.M.: The initial value problem for the Navier-Stokes equations with data inL p. Arch. Ration. Mech. Anal.45, 222–240 (1972)Google Scholar
  8. 8.
    Fujita, H., Kato, T.: On the Navier-Stokes initial value problem I. Arch. Ration. Mech. Anal.16, 269–315 (1964)Google Scholar
  9. 9.
    Fujiwara, D., Morimoto, H.: AnL r-theorem of Helmholtz decomposition of vector fields. J. Fac. Sci. Univ. Tokyo, Sect. IA24, 685–700 (1977)Google Scholar
  10. 10.
    Giga, Y.: Analyticity of the semigroup generated by the Stokes operators inL r spaces. Math. Z.178, 297–329 (1981)Google Scholar
  11. 11.
    Giga, Y.: Domains of fractional powers of the Stokes operator inL r-spaces. Arch. Ration. Mech. Anal.89, 251–265 (1985)Google Scholar
  12. 12.
    Giga, Y.: Solutions for semilinear parabolic equations inL p and regularity of weak solutions of the Navier-Stokes system. J. Differ. Equations61, 186–212 (1986)Google Scholar
  13. 13.
    Giga, Y., Miyakawa, T.: Solutions inL r of the Navier-Stokes initial value problem. Arch. Ration. Mech. Anal.89, 267–281 (1985)Google Scholar
  14. 14.
    Giga, Y., Sohr, H.: On the Stokes operator in exterior domains. J. Fac. Sci. Univ. Tokyo Sect. IA36, 103–130 (1989)Google Scholar
  15. 15.
    Iwashita, H., Shibata, Y.: On the analyticity of spectral functions for some exterior boundary value problems. Glas. Mat. III Ser. to appearGoogle Scholar
  16. 16.
    Kato, T.: StrongL p-solutions of the Navier-Stokes equation in 287-1, with applications to weak solutions. Math. Z.187, 471–480 (1984)Google Scholar
  17. 17.
    Ladyzhenskaya, O.A.: The mathematical theory of viscous incompressible flow. Revised 2nd ed.. New York: Gordon and Breach 1969Google Scholar
  18. 18.
    Miyakawa, T.: On nonstationary solutions of the Navier-Stokes equations in an exterior domain. Hiroshima Math. J.12, 115–140 (1982)Google Scholar
  19. 19.
    Murata, M.: Large time asymptotics for fundamental solutions of diffusion equations. Tôhoku Math. J.37, 151–195 (1985)Google Scholar
  20. 20.
    Rauch, J.: Asymptotic behaviour of solutions to hyperbolic partial differential equations with zero speeds. Commun. Pure Appl. Math.31, 431–480 (1978)Google Scholar
  21. 21.
    Shibata, Y.: On the global existence of classical solutions of second order fully nonlinear hyperbolic equations with first order dissipation in the exterior domain. Tsukuba J. Math.7, 1–68 (1983)Google Scholar
  22. 22.
    Solonnikov, V.A.: General boundary value problems for Douglis-Nirenberg elliptic systems II. Proc. Steklov Inst. Math.92, 269–339 (1966)Google Scholar
  23. 23.
    Temam, R.: Navier-Stokes equations, 3rd (revised) ed.. Amsterdam: North-Holland 1984Google Scholar
  24. 24.
    Tsutsumi, Y.: Local energy decay of solutions to the free Schrödinger equation in exterior domains. J. Fac. Sci. Univ. Tokyo, Sect. IA31, 97–108 (1984)Google Scholar
  25. 25.
    Ukai, S.: A solution formula for the Stokes equation in 288-1. Commun. Pure Appl. Math.40, 611–621 (1987)Google Scholar
  26. 26.
    Vainberg, B.R.: On the short wave asymptotic behaviour of solutions of stationary problems and the asymptotic behaviour ast»∞ of solutions of non-stationary problems. Russ. Math. Surv.30, 1–58 (1975)Google Scholar
  27. 27.
    Weissler, F.B.: The Navier-Stokes initial value problem inL p. Arch. Ration. Mech. Anal.74, 219–230 (1980)Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Hirokazu Iwashita
    • 1
  1. 1.Department of Mathematical Science, Graduate School of Science and TechnologyNiigata UniversityNiigataJapan

Personalised recommendations