Mathematische Annalen

, Volume 285, Issue 2, pp 221–231 | Cite as

On subgroups ofGL2 over non-commutative local rings which are normalized by elementary matrices

  • Pera Menal
  • Leonid N. Vaserstein


Local Ring Elementary Matrice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abe, E.: Chevalley groups over local rings. Tôhoku Math. J.21, 474–494 (1969)Google Scholar
  2. 2.
    Bass, H.:K-theory and stable algebra. Publ. Math. IHES22, 5–60 (1964)Google Scholar
  3. 3.
    Costa, D.L., Keller, G.E.: On the normal subgroups ofSL(2, A). J. Pure Appl. Alg.53, 201–227 (1988)Google Scholar
  4. 4.
    Dieudonné, J.: La géometrie des groupes classiques. 3nd ed. Springer Berlin Heidelberg New York: 1971Google Scholar
  5. 5.
    Dickson, L.E.: Theory of linear groups in arbitrary fields. Trans. Am. Math. Soc.2, 363–394 (1901)Google Scholar
  6. 6.
    Klingenberg, W.: Lineare Gruppen über lokalen Ringen. Am. J. Math.83, 137–153 (1961)Google Scholar
  7. 7.
    Klingenberg, W.: Die Structur der linearen Gruppen über einen nichtkommutativen lokalen Ring, Arch. Math.13, 73–81 (1962)Google Scholar
  8. 8.
    Kolotilina, L.Yu, Vavilov, N.A.: Normal structure of the full linear group over a semilocal ring. J. Sov. Math.19, 998–999 (1982)Google Scholar
  9. 9.
    Lacroix, N.H.J.: Two-dimensional linear groups over local rings. Can. J. Math.21, 106–135 (1969)Google Scholar
  10. 10.
    Lacroix, N.H.J., LeVesque, C.: Sur les sous-groupes normaux deSL 2 sur un anneau local. Can. Math. Bull.26, 209–219 (1983)Google Scholar
  11. 11.
    Mason, A.W.: OnGL 2 of of a local ring in which 2 is not a unit. Can. Math. Bull.30, 165–176 (1987)Google Scholar
  12. 12.
    Mason, A.W.: OnGL 2 of a local ring in which 2 is not a unit. II. Comm. Algebra17, 511–551 (1989)Google Scholar
  13. 13.
    Menal, P., Vaserstein, L.N.: On subgroups ofGL 2 over Banach algebras and von Neumann regular rings which are normalized by elementary matrices. 20 pp.Google Scholar
  14. 14.
    McDonald, B.R.: Geometric algebra over local rings. New York Basel: Dekker (1983)Google Scholar
  15. 15.
    Tazhetdinov, S.: Subnormal structure of two-dimensional linear groups over local rings. Algebra Logic22, 707–713 (1983)Google Scholar
  16. 16.
    Vaserstein, L.N.:K 1-theory and the congruence subgroup problem. Math. Notes5, 141–148 (1969)Google Scholar
  17. 17.
    Vaserstein, L.N.: Subnormal structure of the general linear groups over Banach algebras. J. Pure Appl.52, 187–195 (1988)Google Scholar
  18. 18.
    Vaserstein, L.N.: Normal subgroups of orthogonal groups over commutative rings. Am. J. Math. (to appear)Google Scholar
  19. 19.
    Vaserstein, L.N.: Normal subgroups of symplectic groups. PreprintGoogle Scholar
  20. 20.
    Vaserstein, L.N.: Normal subgroups of gauge groups. Am. Math. Soc. Cont. Math.82, 199–220 (1989)Google Scholar
  21. 21.
    Vaserstein, L.N.: On normal subgroupsGL 2 over rings with many units. PreprintGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Pera Menal
    • 1
  • Leonid N. Vaserstein
    • 2
    • 3
  1. 1.Department of MathematicsUniversitat AutònomaBarcelonaSpain
  2. 2.Department of MathematicsPenn State UniversityUniversity ParkUSA
  3. 3.Centre de Recerca MatemàticaInstitut d'Estudis CatalansBarcelonaSpain

Personalised recommendations