Advertisement

Mathematische Annalen

, Volume 285, Issue 2, pp 201–219 | Cite as

Stability and spectra ofC0-semigroups

  • Volker Wrobel
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allan, G.R.: A spectral theory for locally convex algebras. Proc. Lond. Math. Soc.15, 339–421 (1965)Google Scholar
  2. 2.
    Davies, E.B.: One-parameter semigroups. London New York Toronto: Academic Press 1980Google Scholar
  3. 3.
    Doetsch, G.: Handbuch der Laplace-Transformation I. Basel: Birkhäuser 1950Google Scholar
  4. 4.
    Gearhart, L.: Spectral theory for contraction semi-groups on Hilbert space. Trans. A.M.S.236, 385–394 (1978)Google Scholar
  5. 5.
    Greiner, G., Voigt, J., Wolff, M.: On the spectral bound of the generator of semigroups of positive operators. J. Oper. Theory5, 245–256 (1981)Google Scholar
  6. 6.
    Herbst, I.W.: Contraction semigroups and the spectrum ofA 1I+IA 2. J. Oper. Theory7, 61–78 (1982)Google Scholar
  7. 7.
    Herbst, I.W.: The spectrum of Hilbert space semigroups. J. Oper. Theory10, 87–94 (1983)Google Scholar
  8. 8.
    Hille, E., Phillips, R.S.: Functional analysis and semigroups. Providence R.I.: Amer. Math. Soc. 1957Google Scholar
  9. 9.
    Katznelson, Y.: An introduction to harmonic analysis. New York: Dover 1976Google Scholar
  10. 10.
    Nagel, R. (ed.): One-parameter semigroups of positive operators. Lecture Notes Mathematics1184). Berlin Heidelberg New York: Springer 1986Google Scholar
  11. 11.
    Pazy, A.: Semigroups of linear operators and applications to partial differential equations. (Applied Math. Science44), Berlin Heidelberg New York: Springer 1983Google Scholar
  12. 12.
    Schaefer, H.H.: Zur Stabilität vonC 0-Halbgruppen. Math. Ann.280, 161–164 (1988)Google Scholar
  13. 13.
    Slemrod, M.: Asymptotic behavior ofC 0-semi-groups as determined by the spectrum of the generator. Indiana Univ. Math. J.25, 783–792 (1976)Google Scholar
  14. 14.
    Wrobel, V.: Spektraltheorie stetiger Endomorphismen eines lokalkonvexen Raumes. Math. Ann.234, 193–208 (1978)Google Scholar
  15. 15.
    Wrobel, V.: Spectral properties of operators generating Fréchet-Montel spaces. Math. Nachr.129, 9–20 (1986)Google Scholar
  16. 16.
    Wrobel, V.: Asymptotic behavior ofC 0-semigroups inB-convex spaces. Indiana Univ. Math. J.38, 101–114 (1989)Google Scholar
  17. 17.
    Zabczyk, J.: A note onC 0-semigroups. Bull. Acad. Pol. Sci. Ser. Scie. Math.23, 895–898 (1975)Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Volker Wrobel
    • 1
  1. 1.Mathematisches Seminar der UniversitätKiel 1Federal Republic of Germany

Personalised recommendations