Advertisement

Mathematische Annalen

, Volume 285, Issue 2, pp 177–199 | Cite as

Selfinjective algebras of polynomial growth

  • Andrej Skowroński
Article

Keywords

Polynomial Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AS1] Assem, I., Skowroński, A.: Iterated tilted algebras of type 198-1. Math. Z.195, 269–290 (1987)Google Scholar
  2. [AS2] Assem, I., Skowroński, A.: On some classes of simply connected algebras. Proc. London Math. Soc.56, 417–450 (1988)Google Scholar
  3. [AS3] Assem, I., Skowroński, A.: Algebras with cycle-finite derived categories. Math. Ann.280, 441–463 (1988)Google Scholar
  4. [ANS] Assem, I., Nehring, J., Skowroński, A.: Domestic trivial extensions of simply connected algebras. In: Tsukuba J. Math 13 (1989). To appearGoogle Scholar
  5. [B1] Bongartz, K.: Critical simply connected algebras. Manuscr. Math.46, 117–136 (1984)Google Scholar
  6. [B2] Bongartz, K.: A criterion for finite representation type. Math. Ann.269, 1–12 (1984)Google Scholar
  7. [BD] Bondarenko, V.M., Drozd, J.A.: Representation type of finite groups. Zap. Naučn. Sem. LOMI71, 24–41 (1977)Google Scholar
  8. [BG] Bongartz, K., Gabriel, P.: Covering spaces in representation theory. Invent. Math.65, 331–378 (1981/82)Google Scholar
  9. [BLR] Bretscher, O., Läser, C., Riedtmann, C.: Selfinjective and simply connected algebras. Manuscr. Math.36, 253–307 (1981/82)Google Scholar
  10. [BrG] Bretscher, O., Gabriel, P.: The standard form of a representation-finite algebra. Bull. Soc. Math. Fr.111, 21–40 (1983)Google Scholar
  11. [D1] Drozd, J.A.: On tame and wild matrix problems. In: Matrix problems, pp. 104–114. Kiev: Akad. Nauk USSR 1977Google Scholar
  12. [D2] Drozd, J.A.: Tame and wild matrix problems. In: Representations and quadratic forms, pp. 39–74. Kiev: Akad. Nauk USSR 1979Google Scholar
  13. [DS1] Dowbor, P., Skowroński, A.: On the representation type of locally bounded categories. Tsukuba J. Math.10, 63–72 (1986)Google Scholar
  14. [DS2] Dowbor, P., Skowroński, A.: On Galois coverings of tame algebras. Arch. Math.44, 522–529 (1985)Google Scholar
  15. [DS3] Dowbor, P., Skowroński, A.: Galois coverings, of representation-infinite algebras. Comment. Math. Helv.62, 311–337 (1987)Google Scholar
  16. [G1] Gabriel, P.: Auslander-Reiten sequences and representation-finite algebras. Proc. Workshop ICRA II (Ottawa, 1979). (Lecture Notes Mathematics, Vol. 831, pp. 1–71.) Berlin Heidelberg New York: Springer 1980Google Scholar
  17. [G2] Gabriel, P.: The universal cover of a representation-finite algebra. Proc. ICRA III (Pueble, 1980). (Lecture Notes Mathematics, Vol. 903, pp. 68–105.) Berlin Heidelberg New York: Springer 1981Google Scholar
  18. [H] Happel, D.: Triangulated categories in the representation theory of finite dimensional algebras. London Math. Soc. Lecture Note Series, Vol. 119. Cambridge: Cambridge University Press 1988Google Scholar
  19. [HV] Happel, D., Vossieck, D.: Minimal algebras of infinite representation type with preprojective component. Manuscr. Math.42, 221–243 (1983)Google Scholar
  20. [HW] Hughes, D., Waschbüsch, J.: Trivial extensions of tilted algebras. Proc. Lond. Math. Soc.46, 347–364 (1983)Google Scholar
  21. [MP] Martinez-Villa, R., Dela Peña, J.A.: The universal cover of a quiver with relations. J. Pure Appl. Algebra30, 277–292 (1983)Google Scholar
  22. [N] Nehring, J.: Polynomial growth trivial extensions of non-simply connected algebras. In: Bull. Polish Acad. Sci. 9/10 (1988). To appearGoogle Scholar
  23. [NS] Nehring, J., Skowroński, A.: Polynomial growth trivial extensions of simply connected algebras. In: Fundamenta. Math.132, 117–134 (1989)Google Scholar
  24. [Rd1] Riedtmann, C.: Algebren, Darstellungsköcher, Überlagerungen und zurück. Comment. Math. Helv.55, 199–224 (1980)Google Scholar
  25. [Rd2] Riedtmann, C.: Representation-finite selfinjective algebras of typeA n Proc. ICRA II (Ottawa, 1979). (Lecture Notes Mathematics, Vol. 832, pp. 449–520). Berlin, Heidelberg New York: Springer 1980Google Scholar
  26. [Rd3] Riedtmann, C.: Representation-finite selfinjective algebras of classD n Compos. Math.49, 231–282 (1983)Google Scholar
  27. [R1] Ringel, C.M.: Tame algebras. Proc. Workshop ICRA II (Ottawa, 1979). (Lecture Notes Mathematics, Vol. 831, pp. 137–287.) Berlin), Heidelberg New York: Springer 1980Google Scholar
  28. [R2] Ringel, C.M.: Tame algebras and integral quadratic forms. (Lecture Notes Mathematics, Vol. 1099), Berlin Heidelberg New York: Springer 1984Google Scholar
  29. [S1] Skowroński, A.: Group algebras of polynomial growth. Manuscr. Math.59, 499–516 (1987)Google Scholar
  30. [S2] Skowroński, A.: Algèbres auto-injectives à croissance polynomiale. C.R. Acad. Sci. Paris307, Série I, 707–712 (1988)Google Scholar
  31. [S3] Skowroński, A.: Algebras of polynomial growth. In: Banach Center Publications, Vol. 26. To appearGoogle Scholar
  32. [T] Tachikawa, H.: Representations of trivial extensions of hereditary algebras. Proc. ICRA II (Ottawa, 1979). (Lecture Notes Mathematics, Vol. 832, pp. 579–599). Berlin Heidelberg New York: Springer 1980Google Scholar
  33. [TW] Tachikawa, H., Wakamatsu, T.: Applications of reflection functors for self injective algebras. Proc. ICRA IV (Ottawa, 1984) (Lecture Notes Mathematics, Vol. 1177 pp. 308–327.) Berlin Heidelberg New York: Springer 1986Google Scholar
  34. [W] Waschbüsch, J.: Symmetrische Algebren vom endlichen Modultyp. J. reine angew. Math.321, 78–98 (1981)Google Scholar
  35. [ZN] Zavadskij, A.G., Nazarova, L.A.: On the finiteness and boundedness of a number of parameters. In: Inst. Math. Acad. Sci. USSR, Preprint No. 27, 21–29 (1981)Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Andrej Skowroński
    • 1
  1. 1.Institute of MathematicsNicholas Copernicus UniversityToruńPoland

Personalised recommendations