Advertisement

Mathematische Annalen

, Volume 148, Issue 1, pp 31–64 | Cite as

On the theory of orders, in particular on the semigroup of ideal classes and genera of an order in an algebraic number field

  • E. C. Dade
  • O. Taussky
  • H. Zassenhaus
Article

Keywords

Number Field Algebraic Number Ideal Classis Algebraic Number Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notations

D

an integral domain

I (D)

the set of the fractional ideals ofD formed in the quotient field ofD, closed under the four operations ., +, :, ∩

S (D)

the multiplicative semigroup with division of the arithmetical equivalence classes ofI (D)

\(\mathfrak{O}\)

a noetherian ring

T (\(\mathfrak{O}\))

the multiplicative semigroup with division of the weak equivalence classes of the fractional ideals of\(\mathfrak{O}\)

G (\(\mathfrak{O}\))

the multiplicative group of all invertible\(\mathfrak{O}\)-ideals with order\(\mathfrak{O}\)

\(\mathfrak{O}'\)

an\(\mathfrak{O}\)-order

I (\(\left( {{{\mathfrak{O}'} \mathord{\left/ {\vphantom {{\mathfrak{O}'} \mathfrak{O}}} \right. \kern-\nulldelimiterspace} \mathfrak{O}}} \right)\))

the family of all ideals\(\mathfrak{a}\) ofI(\(\left( \mathfrak{O} \right)\)) such that\(\mathfrak{a} \mathfrak{O}' \in G\left( {\mathfrak{O}'} \right)\)G(\(\mathfrak{a} \mathfrak{O}' \in G\left( {\mathfrak{O}'} \right)\))

T (\(\left( {{{\mathfrak{O}'} \mathord{\left/ {\vphantom {{\mathfrak{O}'} \mathfrak{O}}} \right. \kern-\nulldelimiterspace} \mathfrak{O}}} \right)\))

the family of weak equivalence classes of elements ofI (\(\left( {{{\mathfrak{O}'} \mathord{\left/ {\vphantom {{\mathfrak{O}'} \mathfrak{O}}} \right. \kern-\nulldelimiterspace} \mathfrak{O}}} \right)\))

J (\(\left( {{{\mathfrak{O}'} \mathord{\left/ {\vphantom {{\mathfrak{O}'} \mathfrak{O}}} \right. \kern-\nulldelimiterspace} \mathfrak{O}}} \right)\))

the family of all\(\mathfrak{O}\)-submodules ≠ 0 of\(\mathfrak{O}'\)

U (\(\left( {{{\mathfrak{O}'} \mathord{\left/ {\vphantom {{\mathfrak{O}'} \mathfrak{O}}} \right. \kern-\nulldelimiterspace} \mathfrak{O}}} \right)\))

the family of all ideals\(\mathfrak{a}\) ofJ (\(\left( {{{\mathfrak{O}'} \mathord{\left/ {\vphantom {{\mathfrak{O}'} \mathfrak{O}}} \right. \kern-\nulldelimiterspace} \mathfrak{O}}} \right)\)) such that\(\mathfrak{a}\mathfrak{O}' = \mathfrak{O}'\)

V (\(\left( {{{\mathfrak{O}'} \mathord{\left/ {\vphantom {{\mathfrak{O}'} \mathfrak{O}}} \right. \kern-\nulldelimiterspace} \mathfrak{O}}} \right)\))

the multiplicative semigroup with division of the weak equivalence classes contained inU (\(\left( {{{\mathfrak{O}'} \mathord{\left/ {\vphantom {{\mathfrak{O}'} \mathfrak{O}}} \right. \kern-\nulldelimiterspace} \mathfrak{O}}} \right)\))

the ring of the rational integers

Q

the rational field

\(\mathfrak{O}_\mathfrak{p} \)

the local ring of all elementsx/ν (x\(\mathfrak{O}\),ν\(\mathfrak{O}\),ν\(\mathfrak{p}\)) belonging to the prime ideal\(\mathfrak{p}\) of the integral domain\(\mathfrak{O}\)

\(\mathfrak{a}_\mathfrak{p} \)

the local extension a\(\mathfrak{a} \mathfrak{O}_\mathfrak{p} \) of a member\(\mathfrak{a}\) ofI (\(\mathfrak{O}\)) to a member ofI (\(\mathfrak{O}_\mathfrak{p} \))

N (\(\mathfrak{a}\))

a non-negative integer with the property that\(\mathfrak{a}^{N\left( \mathfrak{a} \right)} \) is invertible, but\(\mathfrak{a}^{N\left( \mathfrak{a} \right) - 1} \) is not invertible.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [0]
    Dade, E. C., O. Taussky andH. Zassenhaus: On the semigroup of ideal classes in an order of an algebraic number field. Bull. Am. Math. Soc.67, 305–308 (1961).Google Scholar
  2. [1]
    Dedekind, R.: Über die Anzahl der Ideal-Klassen in den verschiedenen Ordnungen eines endlichen Körpers, Festschrift Technische Hochschule Braunschweig 1877, Werke I, 105–158; Über die Theorie der ganzen algebraischen Zahlen [Supplement XI von Dirichlets Vorlesungen über Zahlentheorie, 4. Aufl. 434–657 (1894)], Werke III, 1–222.Google Scholar
  3. [2]
    Gauss, K. F.: Disquisitiones Arithmeticae, Art. 306.Google Scholar
  4. [3]
    Grell, H.: Zur Theorie der Ordnungen in algebraischen Zahl- und Funktionenkörpern. Math. Ann.97, 524–558 (1927); Beziehungen zwischen den Idealen verschiedener Ringe. Math. Ann.97, 490–523 (1927).Google Scholar
  5. [4]
    Minkowski, H.: Geometrie der Zahlen. Leipzig 1910.Google Scholar
  6. [5]
    Taussky, O.: On matrix classes corresponding to an ideal and its inverse. Illinois J. Math.1, 108–113 (1957).Google Scholar
  7. [6]
    Zassenhaus, H.: Neuer Beweis der Endlichkeit der Klassenzahl bei unimodularer Äquivalenz endlicher ganzzahliger Substitutionsgruppen. Abhandl. math. Seminar Hamburg. Univ.12, 276–288 (1938).Google Scholar
  8. [7]
    Zassenhaus, H.: The theory of groups. New York 1958.Google Scholar
  9. [8]
    van der Waerden, B. L.: Modern Algebra II. New York 1949.Google Scholar
  10. [9]
    Zariski, O., andP. Samuel: Commutative Algebra, I, II. Princeton 1958.Google Scholar
  11. [10]
    Nagata, M.: On the derived normal rings of noetherian integral domains. Mem. Coll. Sci. Univ. Kyoto29 (1955).Google Scholar

Copyright information

© Springer-Verlag 1962

Authors and Affiliations

  • E. C. Dade
    • 1
  • O. Taussky
    • 2
  • H. Zassenhaus
    • 3
  1. 1.Pasadena
  2. 2.Pasadena
  3. 3.Notre Dame

Personalised recommendations