Advertisement

Mathematische Annalen

, Volume 233, Issue 2, pp 163–179 | Cite as

Hilbert modular forms for the field\(\mathbb{Q}(\sqrt 6 )\)

  • G. van der Geer
Article

Keywords

Modular Form Hilbert Modular Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blumenthal, O.: Über Modulfunktionen von mehreren Veränderlichen. Math. Ann.56, 58 (1903)Google Scholar
  2. 2.
    Bombieri, E.: Canonical models of surfaces of general type. Publ. Math. I.H.E.S.42, 171–220 (1973)Google Scholar
  3. 3.
    van der Geer, G.: On Hilbert modular surfaces of principal congruence subgroups. Dissertation, Rijksuniversiteit te Leiden, 1977Google Scholar
  4. 4.
    van der Geer, G.: On the minimality of Hilbert modular surfaces of congruence subgroups. To appearGoogle Scholar
  5. 5.
    van der Geer, G., Van de Ven, A.: On the minimality of certain Hilbert modular surfaces. In “Complex Analysis and Algebraic Geometry”. Iwanami Shoten and Cambridge University Press 1977Google Scholar
  6. 6.
    van der Geer, G., Zagier, D.: The Hilbert modular group for the field\(\mathbb{Q}(\sqrt {13} )\). Inventiones Math.42, 93–133 (1977)Google Scholar
  7. 7.
    Gundlach, K.-B.: Die Bestimmung der Funktionen zur Hilbertschen Modulgruppe des Zahlkörpers\(\mathbb{Q}(\sqrt 5 )\). Math. Ann.152, 226–256 (1963)Google Scholar
  8. 8.
    Gundlach, K.-B.: Die Bestimmung der Funktionen zu einigen Hilbertschen Modulgruppen. J. reine angew. Math.220, 109–153 (1965)Google Scholar
  9. 9.
    Hammond, W. F.: The two actions of Hilbert's modular group. To appear in American Journal of Math.Google Scholar
  10. 10.
    Hirzebruch, F.: Hilbert Modular Surfaces. L'Enseignement Math.19, 183–281 (1973)Google Scholar
  11. 11.
    Hirzebruch, F.: Hilbert's modular group for the field\(\mathbb{Q}(\sqrt 5 )\) and the cubic diagonal surface of Clebsch and Klein. Russian Math. Surveys31, 96–110 (1976); from Uspekki Math. Nauk.31, 133–166 (1976)Google Scholar
  12. 12.
    Hirzebruch, F.: The ring of Hilbert modular forms for real quadratic fields of small discriminant. In “Modular Functions of one Variable VI”, Springer Lecture Notes 627, pp. 288–322Google Scholar
  13. 13.
    Hirzebruch, F.: Überlagerungen der projektiven Ebene und Hilbertsche Modulflächen. To appearGoogle Scholar
  14. 14.
    Hirzebruch, F., Van de Ven, A.: Hilbert modular surfaces and the classification of algebraic surfaces. Invent. Math.23, 1–29 (1974)Google Scholar
  15. 15.
    Hirzebruch, F., Zagier, D.: Classification of Hilbert Modular Surfaces. In “Complex Analysis and Algebraic Geometry”. Iwanami Shoten and Cambridge University Press 1977Google Scholar
  16. 16.
    Horikawa, E.: Algebraic surfaces of general type with smallc 12, I. Ann. of Math.104, 357–387 (1976)Google Scholar
  17. 17.
    Svarčman, O. V.: Simply-connectedness of the factor space of the Hilbert modular group (in Russian). Functional Analysis and its Applications8, 99–100 (1974)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • G. van der Geer
    • 1
  1. 1.Mathematisches Institut der UniversitätBonnGermany

Personalised recommendations