Advertisement

Mathematische Annalen

, Volume 233, Issue 2, pp 155–161 | Cite as

Some examples concerning rotundity in Banach spaces

  • Mark A. Smith
Article

Keywords

Banach Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, K. W.: Midpoint local uniform convexity, and other geometric properties of Banach spaces. Dissertation, University of Illinois 1960Google Scholar
  2. 2.
    Brodskii, M. S., Mil'man, D. P.: On the center of a convex set. Dokl. Akad. Nauk SSSR (N. S.)59, 837–840 (1948)Google Scholar
  3. 3.
    Clarkson, J.A.: Uniformly convex spaces. Trans. Amer. Math. Soc.40, 396–414 (1936)Google Scholar
  4. 4.
    Cudia, D. F.: Rotundity. In: Proc. Symp. Pure Math., pp. 73–97. Providence, R. I.: Amer. Math. Soc. 1963Google Scholar
  5. 5.
    Day, M. M.: Strict convexity and smoothness of normed spaces. Trans. Amer. Math. Soc.78, 516–528 (1955)Google Scholar
  6. 6.
    Day, M. M., James, R. C., Swaminathan, S.: Normed linear spaces that are uniformly convex in every direction. Canad. J. Math.23, 1051–1059 (1971)Google Scholar
  7. 7.
    Fan, K., Glicksberg, I.: Some geometric properties of the sphere in a normed linear space. Duke Math. J.25, 553–568 (1958)Google Scholar
  8. 8.
    Garkavi, A. L.: The best possible net and best possible cross section of a set in a normed space. Izv. Akad. Nauk SSSR Ser. Mat.26, 87–106 (1962)Google Scholar
  9. 9.
    Lovaglia, A. R.: Locally uniformly convex Banach spaces. Trans. Amer. Math. Soc.78, 225–238 (1955)Google Scholar
  10. 10.
    Rainwater, J.: Local uniform convexity of Day's norm onc 0(Г). Proc. Amer. Math. Soc.22, 335–339 (1969)Google Scholar
  11. 11.
    Smith, M. A.: Banach spaces that are uniformly rotund in weakly compact sets of directions. Canad. J. Math.29, 963–970 (1977)Google Scholar
  12. 12.
    Šmul'yan, V. L.: Sur la dérivabilité de la norme dans l'espace de Banach. C. R. (Doklady) Akad. Sci. URSS27, 643–648 (1940)Google Scholar
  13. 13.
    Zizler, V.: On some rotundity and smoothness properties of Banach spaces. Dissertationes Math. (Rozprawy Mat.) No. 87. Warsaw: Inst. Mat. Polsk. Akad. Nauk. 1971Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Mark A. Smith
    • 1
  1. 1.Department of MathematicsMiami UniversityOxfordUSA

Personalised recommendations