Advertisement

Mathematische Annalen

, Volume 233, Issue 2, pp 103–124 | Cite as

On theK-homology of classifying spaces

  • Karlheinz Knapp
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, J.F.: On the groupsJ(X). II. Topoloyg3, 137–171 (1965)Google Scholar
  2. 2.
    Alexander, J.P., Hamrick, G.C., Vick, J.W.: Cobordism of manifolds with odd order normal bundle. Inventiones math.24, 83–94 (1974)Google Scholar
  3. 3.
    Atiyah, M.F.: Characters and cohomology of finite groups. Publ. I.H.E.S.9, 23–64 (1961)Google Scholar
  4. 4.
    Atiyah, M.F., Tall, D.O.: Group representations, λ-rings and theJ-homomorphism. Topology8, 253–297 (1969)Google Scholar
  5. 5.
    Atiyah, M.F., Singer, I.M.: The index of elliptic operators. III. Ann. of Math.87, 546–604 (1968)Google Scholar
  6. 6.
    Atiyah, M.F., Patodi, V.K., Singer, I.M.: Spectral asymmetry and Riemannian geometry. II. Math. Proc. Camb. Phil. Soc.78, 405–432 (1975)Google Scholar
  7. 7.
    Atiyah, M.F., Patodi, V.K., Singer, I.M.: Spectral asymmetry an Riemannian geometry. III. Math. Proc. Camb. Phil. Soc.79, 71–99 (1976)Google Scholar
  8. 8.
    Barge, J., Lannes, J., Latour, F., Vogel, P.: Λ-Sphères. Ann. scient. Ec. Norm. Sup. 4e série t.4, 463–506 (1974)Google Scholar
  9. 9.
    Boardman, J.M.: Stable homotopy theory. Chap. V, Mimeographed Notes, University of Warwick (1966)Google Scholar
  10. 10.
    Conner, P.E., Floyd, E.E.: Differentiable periodic maps. Berlin, Heidelberg, New York: Springer 1964Google Scholar
  11. 11.
    Conner, P.E., Floyd, E.E.: The relation of cobordism toK-theories. Lecture Notes in Mathematics 28. Berlin, Heidelberg, New York: Springer 1966Google Scholar
  12. 12.
    Curtis, C.W., Reiner, I.: Representation theory of finite groups and associative algebras. New York: Interscience Publishers 1962Google Scholar
  13. 13.
    Hirzebruch, F.: Free involutions on manifolds and some elementary number theory. In Istituto Nazionale di Alta Matematica Symposia Mathe.5, 411–419 (1970)Google Scholar
  14. 14.
    Hirzebruch, F., Jänich, K.: Involutions and singularities. Proceedings of the Bombay Colloquium on Algebraic Geometry 219–240 (1968)Google Scholar
  15. 15.
    Landweber, P.: Homological properties of comoduls overMU *(MU) andBP *(BP). Amer. J. Math.98, 591–610 (1976)Google Scholar
  16. 16.
    Lashof, R.: Poincaré duality and cobordism. Trans. Amer. Math. Soc.109, 257–277 (1963)Google Scholar
  17. 17.
    Knapp, K.: Das Bild des Hurewicz-Homomorphismush*s(Bp)→K 1(Bp). Math. Ann.223, 119–138 (1976)Google Scholar
  18. 18.
    Knapp, K.: On thee-Invariant on π*s(P ℂ) and some applications (in preparation)Google Scholar
  19. 19.
    Kreck, M.: Eine Invariante für stabil parallelisierte Mannigfaltigkeiten. Dissertation Bonn (1972)Google Scholar
  20. 20.
    Neumann, W.D.: Signatur related invariants of manifolds. Mimeographed Notes, Bonn (1974)Google Scholar
  21. 21.
    Vick, J.W.: An application ofK-theory to equivariant maps. Bull. Amer. Math. Soc.75, 1017–1019 (1969)Google Scholar
  22. 22.
    Vick, J.W.: Pontryagin duality inK-theory. Proc. Amer. Math. Soc.24, 611–616 (1970)Google Scholar
  23. 23.
    Wilson, G.:K-theory invariants for unitaryG-bordism. Quart. J. Math. Oxford24, 499–526 (1973)Google Scholar
  24. 24.
    Zagier, D.: Higher dimensional Dedekind sums. Math. Ann.202, 149–172 (1973)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Karlheinz Knapp
    • 1
  1. 1.Mathematisches Institut der UniversitätBonnGermany

Personalised recommendations