Advertisement

Mathematische Annalen

, Volume 235, Issue 1, pp 87–110 | Cite as

On a class of KMS states for the unitary groupU(∞)

  • ŞSerban StrĂtilĂ
  • Dan Voiculescu
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Araki, H.: On quasifree states of CAR and Bogoliubov automorphisms. Publ. Res. Inst. Math. Sci., Kyoto Univ.6, 385–442 (1970/1971)Google Scholar
  2. 2.
    Arveson, W.B.: Representations of unitary groups. Preprint (1977)Google Scholar
  3. 3.
    Bratteli, O.: Inductive limits of finite dimensionalC*-algebras. Trans. Amer. Math. Soc.171, 195–234 (1972)Google Scholar
  4. 4.
    Bures, D.H.C.: Certain factors constructed as inifinite tensor products. Compositio Math.15, 169–191 (1963)Google Scholar
  5. 5.
    Combes, F.: Représentations d'uneC*-algèbre et formes linéaires positives. C. R. Acad. Sc. Paris260, 5993–5996 (1965)Google Scholar
  6. 6.
    Combes, F.: Sur les états factoriels d'uneC*-algèbre. C. R. Acad. Sc. Paris265, 736–739 (1967)Google Scholar
  7. 7.
    Dell'Antonio, G.F.: Structure of the algebras of some free systems. Commun. Math. Phys.9, 81–117 (1968)Google Scholar
  8. 8.
    Haag, R., Kastler, D.: An algebraic approach to quantum field theory. J. Math. Phys.5, 848–861 (1964)Google Scholar
  9. 9.
    Hugenholtz, N.M.: Certain automorphisms of the CAR-algebra. In: Symposia Math., Vol. XX, pp. 327–334. London and New York: Academic Press 1976Google Scholar
  10. 10.
    Kadison, R.V.: Notes on the Fermi gas. In: Symposia Math. Vol. XX, pp. 425–431. London and New York: Academic Press 1976Google Scholar
  11. 11.
    Kakutani, S.: On equivalence of infinite product measures. Ann. of Math.49, 214–224 (1948)Google Scholar
  12. 12.
    Kirillov, A.A.: Representations of the infinite dimensional unitary group (Russian). Dokl. Akad. Nauk,212, 288–290 (1973)Google Scholar
  13. 13.
    Liebermann, A.: The structure of certain unitary representations of inifinite symmetric groups. Trans. Amer. Math. Soc.164, 189–198 (1972)Google Scholar
  14. 14.
    Moore, C.C.: Invariant measures on product spaces. In: Proc. of the Fifth Berkeley Symposium on Math. Stat. and Probab., Vol. II, part II, 447–459 (1967)Google Scholar
  15. 15.
    Plymen, R.J.: Projective representations of the infinite orthogonal group. Mathematika24, 115–121 (1977)Google Scholar
  16. 16.
    Powers, R.T., Størmer, E.: Free states of the canonical anticommutation relations. Commun. math. Phys.16, 1–33 (1970)Google Scholar
  17. 17.
    Pukánszky, L.: Some examples of factors. Publ. Math. Debrecen4, 135–156 (1956)Google Scholar
  18. 18.
    Rideau, G.: On some representations of the anticommutation relations. Commun. math. Phys.9, 229–241 (1968)Google Scholar
  19. 19.
    Rocca, F., Sirugue, M., Testard, D.: On a class of equilibrium states under the Kubo-Martin-Schwinger boundary condition. I. Fermions. Commun. math. Phys.13, 317–334 (1969)Google Scholar
  20. 20.
    Segal, I.E.: The structure of a class of representations of the unitary group on a Hilbert space. Proc. Amer. Math. Soc.8, 197–203 (1957)Google Scholar
  21. 21.
    Shale, D., Stinespring, W.F.: States on the Clifford algebra. Ann. Math.80, 365–381 (1964)Google Scholar
  22. 22.
    StrĂtilĂ, Ş., Voiculescu, D.: Representations of AF-algebras and of the groupU(∞). Lecture Notes in Mathematics486. Berlin, Heidelberg, New York: Springer 1975Google Scholar
  23. 23.
    Thoma, E.: Die unzerlegbaren, positiv-definiten Klassenfunktionen der abzählbar unendlichen, symmetrischen Gruppe. Math. Z.85, 40–61 (1964)Google Scholar
  24. 24.
    Voiculescu, D.: Sur les représentations factorielles finie deU(∞) et autres groupes semblables. C. R. Acad. Sc. Paris279, 945–946 (1974)Google Scholar
  25. 25.
    Voiculescu, D.: Représentations factorielles de Type III deU(∞) J. Math. pures et appl.55, 1–20 (1976)Google Scholar
  26. 26.
    Weyl, H.: The classical groups. Their invariants and representations. Princeton University Press 1939Google Scholar
  27. 27.
    StrĂtilĂ, S., Zsidó, L.: Lectures on von Neumann algebras. Editura Academiei & Abacus Press. To appearGoogle Scholar
  28. 28.
    Takesaki, M.: Tomita's theory of modular Hilbert algebras and its applications. Lecture Notes in Mathematics128, Berlin, Heidelberg, New York: Springer 1970Google Scholar
  29. 29.
    Gohberg, I., Krein, M.G.: Introduction to the theory of linear non-selfadjoint operators in Hilbert space (russian). Moscow: Nauka 1965Google Scholar
  30. 30.
    Hille, E., Phillips, R.S.: Functional Analysis and semi-groups. Amer. Math. Soc. Colloquium Publications, Vol.XXXI. Revised Edition. Amer. Math. Soc. Providence, Rhode-Island 1957Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • ŞSerban StrĂtilĂ
    • 1
  • Dan Voiculescu
    • 1
  1. 1.Department of Mathematics, IncresBucureşti 16R. S. România

Personalised recommendations