Advertisement

Mathematische Annalen

, Volume 235, Issue 1, pp 55–85 | Cite as

On the eigenvalues of a class of hypoelliptic operators

  • A. Menikoff
  • J. Sjöstrand
Article

Keywords

Hypoelliptic Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bolley, C., Camus, J., Pham, T.: Colloque d'équations aux dérivées partielles de St-Jean-de-Monts (June 1977). Lecture Notes in Mathematics. Berlin, Heidelberg, New York: Springer (to appear)Google Scholar
  2. 2.
    Boutet de Monvel, L.: Hypoelliptic operators with double characteristics and related pseudo-differential operators. Comm. Pure Appl. Math.27, 585–639 (1974)Google Scholar
  3. 3.
    Boutel de Monvel, L., Treves, F.: On a dass of pseudo-differential operators with double characteristics. Invent. Math.24, 1–34 (1974)Google Scholar
  4. 4.
    Boutel de Monvel, L., Treves, F.: On a class of pseudo-differential equations with double characteristics. Comm. Pure Appl. Math.27, 59–89 (1974)Google Scholar
  5. 5.
    Gaveau, B.: Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents. Acta Math.139 (1977)Google Scholar
  6. 6.
    Hörmander, L.: The spectral function of an elliptic operator. Acta Math.121, 193–218 (1968)Google Scholar
  7. 7.
    Karamata, J.: Neuer Beweis und Verallgemeinerung der Tauberschen Sätze welche die Laplacesche und Stieltijesche Transformationen betreffen. J. Reine u. Angew. Math.164, 27–39 (1931)Google Scholar
  8. 8.
    Kucherenko, V.: Asymptotic solutions of equations with complex characteristics. Math. Sb.137, 163–213 (1974)Google Scholar
  9. 9.
    Melin, A.: Lower bounds for pseudo-differential operators. Arkiv för Math.9, 117–140 (1971)Google Scholar
  10. 10.
    Melin, A., Sjöstrand, J.: Fourier integral operators with complex-valued phase functions. Lecture Notes in Mathematics 459, pp. 120–233. Berlin, Heidelberg, New York: Springer 1975Google Scholar
  11. 11.
    Melin, A., Sjöstrand, J.: Fourier integral operators with complex phase functions and a parametrix for an interior boundary value problem. Comm. P.D.E.1, 313–400 (1976)Google Scholar
  12. 12.
    Metivier, G.: Fonction spectrale et valeurs propres d'une class d'operateurs non elliptiques. Comm. P.D.E.1, 467–519 (1976)Google Scholar
  13. 13.
    Sjöstrand, J.: Parametrices for pseudodifferential operators with multiple characteristics. Arkiv för Mat.12, 85–130 (1974)Google Scholar
  14. 14.
    Sjöstrand, J.: Applications of Fourier distributions with complex phase function. Lecture Notes in Mathematics 459, 255–282. Berlin, Heidelberg, New York: Springer 1975Google Scholar
  15. 15.
    Treves, F.: Solution of Cauchy problems modulo flat functions. Comm. P.D.E.1, 45–72 (1976)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • A. Menikoff
    • 1
    • 2
  • J. Sjöstrand
    • 1
    • 2
  1. 1.Department of MathematicsThe Johns Hopkins UniversityBaltimoreUSA
  2. 2.Department of MathematicsUniversité de Paris-SudOrsay-CedexFrance

Personalised recommendations