Mathematische Annalen

, Volume 241, Issue 3, pp 257–281 | Cite as

Uniqueness of principal values, complete monotonicity of logarithmic derivatives of principal solutions, and oscillation theorems

  • Philip Hartman


Logarithmic Derivative Complete Monotonicity Oscillation Theorem Principal Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Buchholz, H.: The confluent hypergeometric function. Springer Tracts in Natural Philosophy No. 15. Berlin, Heidelberg, New York: Springer 1969Google Scholar
  2. 2.
    Erdélyi, A., ed.: Higher transcendental functions. New York: McGraw-Hill 1953Google Scholar
  3. 3.
    Feller, W.: An introduction to probability theory and its applications. Vol. II, New York: Wiley 1966Google Scholar
  4. 4.
    Hartman, P.: On third order, nonlinear singular, boundary value problems, Pacific J. Math.36, 165–180 (1971)Google Scholar
  5. 5.
    Hartman, P.: Boundary value problems for second order, ordinary differential equations involving a parameter. J. Differential Equations12, 194–212 (1972)Google Scholar
  6. 6.
    Hartman, P.: Ordinary differential equations. Baltimore: Hartman 1973Google Scholar
  7. 7.
    Hartman, P.: Principal solutions of disconjugaten-th order linear differential equations. Amer. J. Math.91, 306–362 (1969) and93, 439–451 (1971)Google Scholar
  8. 8.
    Hartman, P.: Completely monotone families of solutions ofn-th order linear differential equations and infinitely divisible distributions. Ann. Scuola Norm. Sup. Pisa3, 267–287 and 725 (1976)Google Scholar
  9. 9.
    Hartman, P.: Differential equations with nonoscillatory differential equations. Duke Math. J.15, 697–709 (1948)Google Scholar
  10. 10.
    Hartman, P.: Some singular nonoscillatory boundary value problems. SIAM J. Math. Anal. (to appear)Google Scholar
  11. 11.
    Hartman, P., Wintner, A.: On nonoscillatory linear differential equations with monotone coefficients. Amer. J. Math.76, 207–219 (1954)Google Scholar
  12. 12.
    Ismail, M.E.H., Kelker, D.H.: Special functions, Stieltjes transforms and infinite divisibility. Preprint (1977)Google Scholar
  13. 13.
    Kent, J.T.: The infinite divisibility of the von Mises-Fisher distribution for all values of the parameter in all dimensions. Proc. London Math. Soc.35, 359–384 (1977)Google Scholar
  14. 14.
    Simon, B.: Coupling constant analyticity for the anharmonic oscillator. Ann. Phys.58, 76–136 (1970)Google Scholar
  15. 15.
    Weyl, H.: Über gewöhnliche lineare Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen. Math. Ann.68, 220–269 (1910)Google Scholar
  16. 16.
    Wintner, A.: A priori Laplace transformations of linear differential equations. Amer. J. Math.71, 587–594 (1949)Google Scholar
  17. 17.
    Wintner, A.: On the Whittaker functionsW km (x). J. London Math. Soc.25, 351–353 (1950)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Philip Hartman
    • 1
  1. 1.Department of MathematicsThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations