Advertisement

Mathematische Annalen

, Volume 241, Issue 3, pp 193–208 | Cite as

The fixed point subvarieties of unipotent transformations on generalized flag varieties and the green functions

Combinatorial and cohomological treatments centering GLn
  • R. Hotta
  • N. Shimomura
Article

Keywords

Green Function Flag Variety Generalize Flag Variety Unipotent Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Artin, M., Grothendieck, A., Verdier, J.L.: Théorie des topos et cohomologie étale des schémas, SGA 4. Lecture Notes in Mathematics 269, 270, 305. Berlin, Heidelberg, New York: Springer 1972/1973Google Scholar
  2. 2.
    Deligne, P.: Cohomologie étale, SGA 4 1/2. Lecture Notes in Mathematics, 569. Berlin, Heidelberg, New York: Springer 1977Google Scholar
  3. 3.
    Green, J.A.: The characters of the finite general linear groups. Trans. Amer. Math. Soc.80, 402–447 (1955)Google Scholar
  4. 4.
    Grothendieck, A.: Cohomologiel-adic et fonctions L, SGA 5. Lecture Notes in Mathematics, 589. Berlin, Heidelberg, New York: Springer 1977Google Scholar
  5. 5.
    Hotta, R., Springer, T.A.: A specialization theorem for certain Weyl group representations and an application to the Green polynomials of unitary groups. Invent. Math.41, 113–127 (1977)Google Scholar
  6. 6.
    Iwahori, N.: Representation theory of the symmetric groups and the general linear groups (in Japanese). Tokyo: Iwanami 1978Google Scholar
  7. 7.
    Littlewood, D.E.: The theory of group characters. Oxford: Oxford University Press 1950Google Scholar
  8. 8.
    Morris, A.O.: The characters of the group GL(n,q). Math. Z.81, 112–123 (1963)Google Scholar
  9. 9.
    Morris, A.O.: A survey on Hall-Littlewood functions and their applications to representation theory. In: Combinatoire et représentation du groupe symétrique, pp. 136–154. Lecture Notes in Mathematics, 579. Berlin, Heidelberg, New York: Springer 1977Google Scholar
  10. 10.
    Ohmori, Z.: On the Schur indices of GL(n,q) and SL(2n + 1,q). J. math. Soc. Japan29, 693–707 (1977)Google Scholar
  11. 11.
    Shimomura, N.: A theorem on the fixed point set of a unipotent transformation on the flag manifold (to appear in J. math. Soc. Japan)Google Scholar
  12. 12.
    Spaltenstein, N.: The fixed point set of a unipotent transformation on the flag manifold. Proc. Kon. Ak. v. Wet.79, 452–456 (1976)Google Scholar
  13. 13.
    Springer, T.A.: Generalization of Green's polynomials. In: Proceedings of symposia in pure mathematics, Vol. 21, pp. 149–153. Providence: American Mathematical Society 1971Google Scholar
  14. 14.
    Springer, T.A.: Trigonometric sums, Green functions of finite groups, and representations of Weyl groups. Invent. Math.36, 173–207 (1976)Google Scholar
  15. 15.
    Steinberg, R.: On the designularization of the unipotent variety. Invent. Math.36, 209–224 (1976)Google Scholar
  16. 16.
    Thomas, G.P.: Further results on Baxter sequences and generalized Schur functions. In: Combinatoire et représentation du groupe symétrique, pp. 155–167. Lecture Notes in Mathematics 579. Berlin, Heidelberg, New York: Springer 1977Google Scholar
  17. 17.
    Weyl, H.: Classical groups. Princeton: Princeton University Press 1946Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • R. Hotta
    • 1
  • N. Shimomura
    • 1
  1. 1.Department of Mathematics, Faculty of ScienceHiroshima UniversityHiroshimaJapan

Personalised recommendations