Advertisement

Mathematische Annalen

, Volume 230, Issue 1, pp 57–74 | Cite as

Trigonometric approximation with exponential error orders

I. construction of asymptotically optimal processes; generalized de la Vallée Poussin sums
  • Wolfgang Dahmen
Article

Keywords

Error Order Trigonometric Approximation Exponential Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achieser, N. I.: Vorlesungen über Approximationstheorie. Berlin: Akademie Verlag 1967Google Scholar
  2. 2.
    Berens, H.: Interpolationsmethoden zur Behandlung von Approximationsprozessen auf Banachräumen. Lecture Notes in Mathematics 64. Berlin, Heidelberg, New York: Springer 1967Google Scholar
  3. 3.
    Butzer, P. L., Nessel, R. J.: Fourier analysis and approximation. Vol. I. Basel: Birkhäuser 1971Google Scholar
  4. 4.
    Dahmen, W.: Trigonometric approximation with exponential error orders II: Properties of asymptotically optimal processes; impossibility of arbitrarily good error estimates. (to appear)Google Scholar
  5. 5.
    Dahmen, W.: Trigonometric approximation with exponential error orders III: Criteria for asymptotically optimal processes. (to appear)Google Scholar
  6. 6.
    Dahmen, W., Görlich, E.: A conjecture of Golomb on optimal and nearly-optimal approximation. Bull. Amer. Math. Soc.80, 1199–1202 (1974)Google Scholar
  7. 7.
    Dahmen, W., Görlich, E.: Asymptotically optimal linear approximation processes and a conjecture of Golomb. In: Linear Operators and Approximation II (ed. by P. L. Butzer and B. Sz.-Nagy) ISNM Vol. 25. Basel: Birkhäuser 1974Google Scholar
  8. 8.
    Dahmen, W., Görlich, E.: Best approximation with exponential orders and intermediate spaces. Math. Z.148, 7–21 (1976)Google Scholar
  9. 9.
    Dahmen, W., Görlich, E.: The characterization problem for best approximation with exponential error orders and evaluation of entropy. Math. Nachr. 1976 (in print)Google Scholar
  10. 10.
    du Bois-Reymond, P.: Sur la grandeur relative des infinis des fonctions. Annali di Mat. Pura e Appl.4, 338–353 (1971)Google Scholar
  11. 11.
    Görlich, E.: Logarithmic and exponential variants of Bernstein's inequality and generalized derivatives. In: Linear operators and approximation (ed. by P. L. Butzer, J.-P. Kahane and B. Sz.-Nagy), ISNM 20. Basel: Birkhäuser 1972Google Scholar
  12. 12.
    Golomb, M.: Optimal and nearly-optimal linear approximation. In: Approximation of functions (ed. by H. L. Garabedian), Amsterdam: Elsevier 1965Google Scholar
  13. 13.
    Golomb, M.: Lectures on theory of approximation. Mimeographed Lecture Notes. Argonne National Laboratory 1962Google Scholar
  14. 14.
    Korneičuk, N. P.: On methods of investigating extremal problems in the theory of best approximation. Russian Math. Surveys29, 7–43 (1974)Google Scholar
  15. 15.
    Leindler, L.: On summability of Fourier series. Acta. Sci. Math. (Szeged)29, 147–162 (1968)Google Scholar
  16. 16.
    Lorentz, G. G.: Metric entropy, widths and superpositions of functions. Amer. Math. mthly.69, 469–485 (1962)Google Scholar
  17. 17.
    Lorentz, G. G.: Metric entropy and approximation. Bull. Amer. Math. Soc.72, 903–937 (1966)Google Scholar
  18. 18.
    Stečkin, S. B.: On de la Vallée Poussin sums. Dokl. Akad. Nauk SSSR (NS)80, 545–548 (1951)Google Scholar
  19. 19.
    Teljakovskiñ, S. A.: Approximation of differentiable functions by de la Vallée Poussin's sums. Dokl. Akad. Nauk SSSR121, 426–429 (1958)Google Scholar
  20. 19.
    Timan, A. F.: Theory of approximation of functions of a real variable. Oxford: Pergamon Press 1963Google Scholar
  21. 20.
    Zygmund, A.: Trigonometric series I. Cambridge: Cambridge University Press 1959Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Wolfgang Dahmen
    • 1
  1. 1.Institut für Angewandte Mathematik der Universität, BonnBonnFederal Republic of Germany

Personalised recommendations