Mathematische Annalen

, Volume 230, Issue 1, pp 15–23 | Cite as

Holomorphic and meromorphic mappings and curvature. II

  • Bernard Shiffman


Meromorphic Mapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grauert, H., Reckziegel, H.: Hermitesche Metriken und normale Familien holomorpher Abbildungen. Math. Z.89, 108–125 (1965)Google Scholar
  2. 2.
    Grauert, H., Remmert, R.: Konvexität in der komplexen Analysis. Nichtholomorphkonvexe Holomorphiegebiete und Anwendungen auf die Abbildungstheorie. Comm. Math. Helv.31, 152–183 (1956)Google Scholar
  3. 3.
    Griffiths, P. A.: Two theorems on extensions of holomorphic mappings. Inventiones Math.14, 27–62 (1971)Google Scholar
  4. 4.
    Kobayashi, S.: Negative vector bundles and complex Finsler structures. Nagoya Math. J.57, 153–166 (1975)Google Scholar
  5. 5.
    Lelong, P.: Plurisubharmonic functions and positive differential forms. New York: Gordon and Breach 1969Google Scholar
  6. 6.
    Shiffman, B.: Extension of holomorphic maps into hermitian manifolds. Math. Ann.194, 249–258 (1971)Google Scholar
  7. 7.
    Shiffman, B.: Holomorphic and meromorphic mappings and curvature. Math. Ann.222, 171–194 (1976)Google Scholar
  8. 8.
    Siu, Y. T.: Techniques of extension of analytic objects. New York: Marcel Dekker 1974Google Scholar
  9. 9.
    Stein, K.: Fortsetzung holomorpher Korrespondenzen. Inventiones Math.6, 78–90 (1968)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Bernard Shiffman
    • 1
  1. 1.Department of MathematicsThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations