Advertisement

Mathematische Annalen

, Volume 230, Issue 1, pp 1–14 | Cite as

Induced modules and affine quotients

  • Edward Cline
  • Brian Parshall
  • Leonard Scott
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aribaud, F.: Une nouvelle demonstration d'un théorème de R. Bott et B. Kostant. Bull. Math. Soc. France95, 205–242 (1967)Google Scholar
  2. 2.
    Bialynicki-Birula, A.: On homogeneous affine spaces of linear algebraic groups. Amer. J. Math.85, 577–582 (1963)Google Scholar
  3. 3.
    Bialynicki-Birula, A., Hochschild, G., Mostow, G.: Extensions of representations of algebraic linear groups. Amer. J. Math.85, 131–144 (1963)Google Scholar
  4. 4.
    Borel, A., Springer, T.: Rationality properties of linear algebraic groups II. Tohoku Math. J.13, (1969)Google Scholar
  5. 5.
    Bott, R.: The index theorem for differential operators. In: Differential and combinatorial Topology. Princeton, N.J.: Princeton Univ. Press 1965, pp. 167–186Google Scholar
  6. 6.
    Bourbaki, N.: Algèbre commutative. Paris: Hermann 1961Google Scholar
  7. 7.
    Chevalley, C.: Classification des groupes de Lie algébriques. Inst. H. Poincaré, Paris (1956–58)Google Scholar
  8. 8.
    Cline, E., Parshall, B., Scott, L., van der Kallen, W.: Rational and generic cohomology. Inventiones Math.39, 143–169 (1977)Google Scholar
  9. 9.
    Demazure, M., Gabriel, P.: Groupes algébriques. Amsterdam: North-Holland 1970Google Scholar
  10. 10.
    Green, J. A.: Locally finite representations. J. Algebra41, 137–171 (1976)Google Scholar
  11. 11.
    Haboush, W.: Linear algebraic groups and homogeneous vector bundles. To appearGoogle Scholar
  12. 12.
    Haboush, W.: Reductive groups are geometrically reductive: a proof of the Mumford conjecture. Ann. Math.102, 67–84 (1975)Google Scholar
  13. 13.
    Hilton, P., Stammbach, U.: A course in homological algebra. Berlin, Heidelberg, New York: Springer 1971Google Scholar
  14. 14.
    Hochschild, G.: Cohomology of algebraic linear groups. Ill. J. Math.5, 492–579 (1961)Google Scholar
  15. 15.
    Hochschild, G.: Introduction to affine algebraic groups. New York: Holden-Day 1970Google Scholar
  16. 16.
    Miyata, T., Nagata, M.: Note on semi-reductive groups. J. Math. Kyoto Univ.3, 379–382 (1964)Google Scholar
  17. 17.
    Nagata, M.: Invariants of a group in an affine ring. J. Math. Kyoto Univ.3, 369–377 (1964)Google Scholar
  18. 18.
    Richardson, R.: Affine homogeneous spaces of reductive algebraic groups. Bull. London Math. Soc.9, 38–41 (1977)Google Scholar
  19. 19.
    Serre, J.-P.: Espaces fibres algébriques. Sem. C. Chevalley, t. 3, Anneaux de Chow et application (1958)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Edward Cline
    • 1
  • Brian Parshall
    • 2
  • Leonard Scott
    • 1
    • 2
  1. 1.Department of MathematicsClark UniversityWorcesterUSA
  2. 2.Department of MathematicsUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations